Abstract

In this paper, we demonstrate a source of photon pairs based on four-wave-mixing in photonic crystal fibres. Careful engineering of the phase matching conditions in the fibres enables us to create photon pairs at 597 nm and 860 nm in an intrinsically factorable state showing no spectral correlations. This allows for heralding one photon in a pure state and hence renders narrow band filtering obsolete. The source is narrow band, bright and achieves an overall detection efficiency of up to 21% per photon. For the first time, a Hong-Ou-Mandel interference with unfiltered photons from separate fibre sources is presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001), http://dx.doi.org/10.1038/35051009.
    [CrossRef] [PubMed]
  2. N. Gisin and R. Thew, “Quantum communication,” Nat Photon 1, 165–171 (2007), http://dx.doi.org/10.1038/nphoton.2007.22.
    [CrossRef]
  3. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
    [CrossRef] [PubMed]
  4. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).
  5. A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
    [CrossRef]
  6. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
    [CrossRef] [PubMed]
  7. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
    [CrossRef] [PubMed]
  8. D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970), http://link.aps.org/abstract/PRL/v25/p84.
    [CrossRef]
  9. E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
    [CrossRef]
  10. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14870.
    [CrossRef] [PubMed]
  11. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001), http://link.aps.org/abstract/PRA/v64/e063815.
    [CrossRef]
  12. G. Agrawal, “Nonlinear Fiber Optics,” (2000), http://www.springerlink.com/content/q022707lwv86154v/.
  13. L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclassical Optics 3, 346–352 (2001).
    [CrossRef]
  14. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
    [CrossRef] [PubMed]
  15. J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777–5782 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5777.
    [CrossRef] [PubMed]
  16. C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064nm and application to tuneable visible/UV generation,” Opt. Express 16, 2438–2445 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2438.
    [CrossRef] [PubMed]
  17. O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
    [CrossRef]
  18. H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002), http://link.aps.org/abstract/PRA/v66/e024308.
    [CrossRef]
  19. O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).
  20. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  21. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
    [CrossRef]
  22. B. Cemlyn, “Four-Wave Mixing in Microstructured Fibres,” Master’s thesis, University of Bristol (2008).

2008 (2)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064nm and application to tuneable visible/UV generation,” Opt. Express 16, 2438–2445 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2438.
[CrossRef] [PubMed]

2007 (5)

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14870.
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

N. Gisin and R. Thew, “Quantum communication,” Nat Photon 1, 165–171 (2007), http://dx.doi.org/10.1038/nphoton.2007.22.
[CrossRef]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

2006 (3)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

2005 (2)

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777–5782 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5777.
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

2002 (1)

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002), http://link.aps.org/abstract/PRA/v66/e024308.
[CrossRef]

2001 (3)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001), http://link.aps.org/abstract/PRA/v64/e063815.
[CrossRef]

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclassical Optics 3, 346–352 (2001).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001), http://dx.doi.org/10.1038/35051009.
[CrossRef] [PubMed]

1987 (2)

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970), http://link.aps.org/abstract/PRL/v25/p84.
[CrossRef]

Agrawal, G.

G. Agrawal, “Nonlinear Fiber Optics,” (2000), http://www.springerlink.com/content/q022707lwv86154v/.

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Banaszek, K.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970), http://link.aps.org/abstract/PRL/v25/p84.
[CrossRef]

Cemlyn, B.

B. Cemlyn, “Four-Wave Mixing in Microstructured Fibres,” Master’s thesis, University of Bristol (2008).

Cohen, O.

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

Fabre, C.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Fan, J.

Friberg, S. R.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclassical Optics 3, 346–352 (2001).
[CrossRef]

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Garay-Palmett, K.

Giacobino, E.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat Photon 1, 165–171 (2007), http://dx.doi.org/10.1038/nphoton.2007.22.
[CrossRef]

Grandclment, D.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Grice, W. P.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001), http://link.aps.org/abstract/PRA/v64/e063815.
[CrossRef]

Grynberg, G.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Hasegawa, T.

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

Heidmann, A.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Hofmann, H. F.

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002), http://link.aps.org/abstract/PRA/v66/e024308.
[CrossRef]

Hong, C. K.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclassical Optics 3, 346–352 (2001).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Horowicz, R.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001), http://dx.doi.org/10.1038/35051009.
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001), http://dx.doi.org/10.1038/35051009.
[CrossRef] [PubMed]

Loh, H.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
[CrossRef] [PubMed]

Lundeen, J.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).

Lundeen, J. S.

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Matsui, M.

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

McGuinness, H. J.

McKinstrie, C. J.

Migdall, A.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001), http://dx.doi.org/10.1038/35051009.
[CrossRef] [PubMed]

Mosley, P.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

Murdoch, S. G.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Nagata, T.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

O’Brien, J. L.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

Okamoto, R.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Pinard, M.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Puentes, G.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).

Radic, S.

Rangel-Rojo, R.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Raymer, M. G.

Raymer, M. G. l

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

Reynaud, S.

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Sasaki, K.

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

Shields, A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Silberhorn, C.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

Simon, J.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
[CrossRef] [PubMed]

Smith, B.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

Soujaeff, A.

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Takeuchi, S.

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002), http://link.aps.org/abstract/PRA/v66/e024308.
[CrossRef]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat Photon 1, 165–171 (2007), http://dx.doi.org/10.1038/nphoton.2007.22.
[CrossRef]

Thompson, J. K.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
[CrossRef] [PubMed]

U’ren, A. B.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14870.
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001), http://link.aps.org/abstract/PRA/v64/e063815.
[CrossRef]

Vuletic, V.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
[CrossRef] [PubMed]

Wadsworth, W. J.

C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064nm and application to tuneable visible/UV generation,” Opt. Express 16, 2438–2445 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2438.
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14870.
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001), http://link.aps.org/abstract/PRA/v64/e063815.
[CrossRef]

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).

Wang, L. J.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclassical Optics 3, 346–352 (2001).
[CrossRef]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970), http://link.aps.org/abstract/PRL/v25/p84.
[CrossRef]

Wong, G. K. L.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Xiong, C.

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Hyperfine Interactions (1)

E. Giacobino, C. Fabre, A. Heidmann, R. Horowicz, S. Reynaud, D. Grandclment, G. Grynberg, and M. Pinard, “Generation of non classical states of light by phase conjugation and parametric conversion,” Hyperfine Interactions 37, 109–124 (1987), http://dx.doi.org/10.1007/BF02395706.
[CrossRef]

J. Mod. Opt. (1)

A. Soujaeff, S. Takeuchi, K. Sasaki, T. Hasegawa, and M. Matsui, “Heralded single photon source at 1550nm from pulsed parametric down conversion,” J. Mod. Opt. 54, 467–471 (2007), http://www.informaworld.com/10.1080/09500340600742239.
[CrossRef]

J. Opt. B: Quantum and Semiclassical Optics (1)

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B: Quantum and Semiclassical Optics 3, 346–352 (2001).
[CrossRef]

Laser Phys. (1)

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. l Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Phys. 15, 146–161 (2005).

Nat Photon (1)

N. Gisin and R. Thew, “Quantum communication,” Nat Photon 1, 165–171 (2007), http://dx.doi.org/10.1038/nphoton.2007.22.
[CrossRef]

Nature (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001), http://dx.doi.org/10.1038/35051009.
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

New J. Phys. (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

New Journal of Physics (1)

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New Journal of Physics 8, 67 (2006).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (2)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001), http://link.aps.org/abstract/PRA/v64/e063815.
[CrossRef]

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002), http://link.aps.org/abstract/PRA/v66/e024308.
[CrossRef]

Phys. Rev. Lett. (3)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007), http://link.aps.org/abstract/PRL/v99/e120501.
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970), http://link.aps.org/abstract/PRL/v25/p84.
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Science (2)

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A High-Brightness Source of Narrowband, Identical-Photon Pairs,” Science 313, 74–77 (2006).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science 316, 726–729 (2007), http://www.sciencemag.org/cgi/content/abstract/316/5825/726.
[CrossRef] [PubMed]

Other (3)

G. Agrawal, “Nonlinear Fiber Optics,” (2000), http://www.springerlink.com/content/q022707lwv86154v/.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” arXiv quant-phys, 0809.0071v1 (2008).

B. Cemlyn, “Four-Wave Mixing in Microstructured Fibres,” Master’s thesis, University of Bristol (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Phase matching curve for FWM in birefringent PCF. The curves ff→ff (ss→ss) represent the cases where pump and daughter photons are all polarized along the f (s) axis. Note that the same curve is obtained for a non-birefringent fibre described by just one refractive index. In the case ff→ss (ss→ff), orthogonally polarized pump and daughter photons see different modal indices which leads to a region in the phase matching curve featuring a horizontal tangent. At this point signal and idler photons have no frequency correlation and are hence in a factorable state. (b) SEM of the central region of the fibre used in these experiments. The birefringence required was introduced by reducing the size of two holes adjacent to the core (11 o’clock and 5 o’clock).

Fig. 2.
Fig. 2.

(a) Phase matching condition of the PCF, (b) Envelope of the pump intensity, (c) JSA of the created photon pair.

Fig. 3.
Fig. 3.

Schematic of the experimental setup. See text for explanations.

Fig. 4.
Fig. 4.

Intrinsic spectral distribution of created signal and idler photons, measured by a spectrometer and a cooled CCD camera.

Fig. 5.
Fig. 5.

4-fold coincidence count rate as a function of the temporal delay δt between the signal photons impinging on the beam splitter. The error bars are determined for a Poisson distribution, given by the square root of the obtained count rates. The solid curves is a fit through the experimental data with a Lorentzian function resulting in a visibility of 76.2%.

Fig. 6.
Fig. 6.

JSA of the bi-photon state as a function of signal and idler wavelength. It can clearly be seen that outside the central peak, oscillations given by the sinc-shaped phase matching introduce some asymmetry, leading to distinguishability and hence lack of visibility.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 ω p = ω s + ω i and 2 n p ω p c n s ω s c n i ω i c 2 γP = 0

Metrics