Abstract

We describe how a time series of optical resonance spectra of an evaporating, non-spherical, irregular aerosol particle levitated in an electrodynamic balance exhibits patterns which are related to its evaporation kinetics. Simulated spectra of an evaporating, model aerosol particle show comparable features. If these patterns are used to deduce the particle size change with time, the resulting vapor pressures and enthalpies of vaporization compare favorably with literature data for both crystalline ammonium nitrate and succinic acid particles.

© 2009 Optical Society of America

Full Article  |  PDF Article

Corrections

Alessandro A. Zardini and Ulrich K. Krieger, "Evaporation kinetics of a non-spherical, levitated aerosol particle using optical resonance spectroscopy for precision sizing: Errata," Opt. Express 18, 10760-10761 (2010)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-10-10760

References

  • View by:
  • |
  • |
  • |

  1. IPCC2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)] (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007).
  2. S. Chattopadhyay, H. J. Tobias, and P. J. Ziemann, "A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer," Anal. Chem. 73, 3797-3803 (2001).
    [CrossRef] [PubMed]
  3. D. J. Rader and P. H. McMurry, "Application of the Tandem differential Mobility Analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771-787 (1986).
    [CrossRef]
  4. P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. AP 22, 97-101 (2003).
    [CrossRef]
  5. G. O. Rubel, "Evaporation of Single Aerosol Binary Oil Droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
    [CrossRef]
  6. A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phis. Rev. Lett. 38, 1351-1354 (1977).
    [CrossRef]
  7. J. L. Huckaby, A. K. Ray, and B. Das, "Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra," Appl. Opt. 33, 7112-7125 (1994).
    [CrossRef] [PubMed]
  8. A. A. Zardini, U. K. Krieger, and C. Marcolli, "White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles," Opt. Express 14, 6951-6962 (2006).
    [CrossRef] [PubMed]
  9. C. Braun and U. K. Krieger, "Two-dimensional angular lightscattering in aqueous NaCl single aerosol particles during deliquescence and efflorescence," Opt. Express 8, 314-321 (2001).
    [CrossRef] [PubMed]
  10. K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
    [CrossRef]
  11. J. R. Janesick, in Scientific Charge-Coupled Devices (SPIE press, Washington, USA, 2001), pp. 204-207.
  12. B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
    [CrossRef]
  13. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
    [CrossRef] [PubMed]
  14. D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    [CrossRef]
  15. T. Ichikawa, "The Assembly of Hard Spheres as a Structure Model of Amorphous Iron," Phys. Status Solidi A 29, 293-302 (1975)
    [CrossRef]
  16. J. C. Maxwell, Encyclopedia Britannica, Vol. 2, 82 (1877).
  17. U. K. Krieger and A. A. Zardini, "Using dynamic light scattering to characterize mixed phase single particles levitated in a quasi-electrostatic balance," Faraday Discuss. 137, 377-388 (2008).
    [CrossRef] [PubMed]
  18. J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
    [CrossRef]
  19. H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
    [CrossRef]
  20. W. J. Massman, "A Review of the molecular diffusivities of H2O,CO2,CH4,CO,O3,SO2,NH3,N2O,NO, And NO2 in air, O2 and N2 near STP," Atmos. Environ. 32, 1111-1127 (1998).
    [CrossRef]
  21. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics, (Hemisphere Publishing Corp., New York, 1989).
  22. L. V. Gurvich, I. V. Veyts, and C. B. Alcock, "Thermodynamic Properties of Individual Substances," 4th ed. (Hemisphere Publishing Corp., New York, 1989).
  23. J. D. Cox, D. Harrop, and A. J. Head, "The standard enthalpy of formation of ammonium nitrate and of the nitrate ion," J. Chem. Thermodyn. 11, 811-814 (1979).
    [CrossRef]
  24. CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, Boca Raton, 2007).
  25. M. Mozurkewich, "The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size," Atmos. Environ. 27A, 261-270 (1993).
  26. M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
    [CrossRef]

2008 (1)

U. K. Krieger and A. A. Zardini, "Using dynamic light scattering to characterize mixed phase single particles levitated in a quasi-electrostatic balance," Faraday Discuss. 137, 377-388 (2008).
[CrossRef] [PubMed]

2006 (2)

A. A. Zardini, U. K. Krieger, and C. Marcolli, "White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles," Opt. Express 14, 6951-6962 (2006).
[CrossRef] [PubMed]

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

2005 (1)

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

2003 (2)

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. AP 22, 97-101 (2003).
[CrossRef]

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
[CrossRef]

2001 (2)

S. Chattopadhyay, H. J. Tobias, and P. J. Ziemann, "A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer," Anal. Chem. 73, 3797-3803 (2001).
[CrossRef] [PubMed]

C. Braun and U. K. Krieger, "Two-dimensional angular lightscattering in aqueous NaCl single aerosol particles during deliquescence and efflorescence," Opt. Express 8, 314-321 (2001).
[CrossRef] [PubMed]

1999 (1)

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

1998 (1)

W. J. Massman, "A Review of the molecular diffusivities of H2O,CO2,CH4,CO,O3,SO2,NH3,N2O,NO, And NO2 in air, O2 and N2 near STP," Atmos. Environ. 32, 1111-1127 (1998).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

M. Mozurkewich, "The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size," Atmos. Environ. 27A, 261-270 (1993).

1990 (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

1986 (1)

D. J. Rader and P. H. McMurry, "Application of the Tandem differential Mobility Analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771-787 (1986).
[CrossRef]

1982 (1)

G. O. Rubel, "Evaporation of Single Aerosol Binary Oil Droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
[CrossRef]

1979 (1)

J. D. Cox, D. Harrop, and A. J. Head, "The standard enthalpy of formation of ammonium nitrate and of the nitrate ion," J. Chem. Thermodyn. 11, 811-814 (1979).
[CrossRef]

1977 (1)

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phis. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

1975 (1)

T. Ichikawa, "The Assembly of Hard Spheres as a Structure Model of Amorphous Iron," Phys. Status Solidi A 29, 293-302 (1975)
[CrossRef]

1962 (1)

J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
[CrossRef]

Aptowicz, K. B.

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phis. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Berge, B.

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

Bilde, M.

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
[CrossRef]

Brandner, J. D.

J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
[CrossRef]

Braun, C.

Chang, R. K.

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

Chattopadhyay, S.

S. Chattopadhyay, H. J. Tobias, and P. J. Ziemann, "A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer," Anal. Chem. 73, 3797-3803 (2001).
[CrossRef] [PubMed]

Cox, J. D.

J. D. Cox, D. Harrop, and A. J. Head, "The standard enthalpy of formation of ammonium nitrate and of the nitrate ion," J. Chem. Thermodyn. 11, 811-814 (1979).
[CrossRef]

Das, B.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phis. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

Harrington, J. Y.

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

Harrop, D.

J. D. Cox, D. Harrop, and A. J. Head, "The standard enthalpy of formation of ammonium nitrate and of the nitrate ion," J. Chem. Thermodyn. 11, 811-814 (1979).
[CrossRef]

Head, A. J.

J. D. Cox, D. Harrop, and A. J. Head, "The standard enthalpy of formation of ammonium nitrate and of the nitrate ion," J. Chem. Thermodyn. 11, 811-814 (1979).
[CrossRef]

Hill, S. C.

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Huckaby, J. L.

Ichikawa, T.

T. Ichikawa, "The Assembly of Hard Spheres as a Structure Model of Amorphous Iron," Phys. Status Solidi A 29, 293-302 (1975)
[CrossRef]

Ishikawa, T.

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. AP 22, 97-101 (2003).
[CrossRef]

Junk, N. M.

J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
[CrossRef]

Krieger, U. K.

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Lamb, D.

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

Lawrence, J. W.

J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
[CrossRef]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Mackowski, D. W.

Magee, N.

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

Marcolli, C.

Massman, W. J.

W. J. Massman, "A Review of the molecular diffusivities of H2O,CO2,CH4,CO,O3,SO2,NH3,N2O,NO, And NO2 in air, O2 and N2 near STP," Atmos. Environ. 32, 1111-1127 (1998).
[CrossRef]

McMurry, P. H.

D. J. Rader and P. H. McMurry, "Application of the Tandem differential Mobility Analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771-787 (1986).
[CrossRef]

Mishchenko, M. I.

Mønster, J.

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
[CrossRef]

Moyle, A. M.

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

Mozurkewich, M.

M. Mozurkewich, "The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size," Atmos. Environ. 27A, 261-270 (1993).

Pan, Y. L.

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

Paradis, P. F.

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. AP 22, 97-101 (2003).
[CrossRef]

Pinnick, R. G.

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

R¨uhl, E.

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

Rader, D. J.

D. J. Rader and P. H. McMurry, "Application of the Tandem differential Mobility Analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771-787 (1986).
[CrossRef]

Ray, A. K.

Robins, J.

J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
[CrossRef]

Rohmann, J.

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

Rosenørn, T.

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
[CrossRef]

Rubel, G. O.

G. O. Rubel, "Evaporation of Single Aerosol Binary Oil Droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
[CrossRef]

Steiner, B.

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

Sudholz, K.

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

Svenningsson, B.

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
[CrossRef]

Tobias, H. J.

S. Chattopadhyay, H. J. Tobias, and P. J. Ziemann, "A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer," Anal. Chem. 73, 3797-3803 (2001).
[CrossRef] [PubMed]

Xue, H.

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

Yoda, S.

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. AP 22, 97-101 (2003).
[CrossRef]

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Zardini, A. A.

U. K. Krieger and A. A. Zardini, "Using dynamic light scattering to characterize mixed phase single particles levitated in a quasi-electrostatic balance," Faraday Discuss. 137, 377-388 (2008).
[CrossRef] [PubMed]

A. A. Zardini, U. K. Krieger, and C. Marcolli, "White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles," Opt. Express 14, 6951-6962 (2006).
[CrossRef] [PubMed]

Ziemann, P. J.

S. Chattopadhyay, H. J. Tobias, and P. J. Ziemann, "A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer," Anal. Chem. 73, 3797-3803 (2001).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. Chattopadhyay, H. J. Tobias, and P. J. Ziemann, "A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer," Anal. Chem. 73, 3797-3803 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Atmos. Environ. (2)

W. J. Massman, "A Review of the molecular diffusivities of H2O,CO2,CH4,CO,O3,SO2,NH3,N2O,NO, And NO2 in air, O2 and N2 near STP," Atmos. Environ. 32, 1111-1127 (1998).
[CrossRef]

M. Mozurkewich, "The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size," Atmos. Environ. 27A, 261-270 (1993).

Environ. Sci. Technol. (1)

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols," Environ. Sci. Technol. 37, 1371-1378 (2003).
[CrossRef]

Eur. Phys. J. AP (1)

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. AP 22, 97-101 (2003).
[CrossRef]

Faraday Discuss. (1)

U. K. Krieger and A. A. Zardini, "Using dynamic light scattering to characterize mixed phase single particles levitated in a quasi-electrostatic balance," Faraday Discuss. 137, 377-388 (2008).
[CrossRef] [PubMed]

J. Aerosol Sci. (1)

D. J. Rader and P. H. McMurry, "Application of the Tandem differential Mobility Analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771-787 (1986).
[CrossRef]

J. Atmos. Sci. (1)

H. Xue, A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, "Experimental Studies of Droplet Evaporation Kinetics: Validation ofModels for Binary and Ternary Aqueous Solutions," J. Atmos. Sci. 62, 4310-4326 (2005).
[CrossRef]

J. Chem. Eng. Data (1)

J. D. Brandner, N. M. Junk, J. W. Lawrence, and J. Robins, "Vapor Pressure of Ammonium Nitrate," J. Chem. Eng. Data 7, 297-298 (1962).
[CrossRef]

J. Chem. Thermodyn. (1)

J. D. Cox, D. Harrop, and A. J. Head, "The standard enthalpy of formation of ammonium nitrate and of the nitrate ion," J. Chem. Thermodyn. 11, 811-814 (1979).
[CrossRef]

J. Colloid Interface Sci. (1)

G. O. Rubel, "Evaporation of Single Aerosol Binary Oil Droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
[CrossRef]

J. Geophys. Res. (1)

K. B. Aptowicz, R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Optical scattering patterns from single urban aerosol particles at Adelphi, Maryland, USA: A classification relating to particle morphologies," J. Geophys. Res. 111, D12212 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Phis. Rev. Lett. (1)

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phis. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

B. Berge, K. Sudholz, B. Steiner, J. Rohmann, and E. R¨uhl, "In situ size determination of single levitated solid aerosols," Phys. Chem. Chem. Phys. 1, 5485-5489 (1999).
[CrossRef]

Phys. Rev. A (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

T. Ichikawa, "The Assembly of Hard Spheres as a Structure Model of Amorphous Iron," Phys. Status Solidi A 29, 293-302 (1975)
[CrossRef]

Other (6)

J. C. Maxwell, Encyclopedia Britannica, Vol. 2, 82 (1877).

IPCC2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)] (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007).

J. R. Janesick, in Scientific Charge-Coupled Devices (SPIE press, Washington, USA, 2001), pp. 204-207.

CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, Boca Raton, 2007).

J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics, (Hemisphere Publishing Corp., New York, 1989).

L. V. Gurvich, I. V. Veyts, and C. B. Alcock, "Thermodynamic Properties of Individual Substances," 4th ed. (Hemisphere Publishing Corp., New York, 1989).

Supplementary Material (4)

» Media 1: MOV (3153 KB)     
» Media 2: MOV (632 KB)     
» Media 3: MOV (1185 KB)     
» Media 4: MOV (473 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Resonance spectra of a solid AN particle (T = 293 K, 10 s exposure time, intensity normalized to the LED emission spectrum) taken at t = 1, 86 and 87 minutes (black, red and green curve, respectively) during the experiment.

Fig. 2.
Fig. 2.

Data processing and radius retrieval for two AN particles evaporating at T = 283 K (panels (a) to (d)) and T = 293 K (panels (e) to (h)). Panels (a) and (e) show the temporal evolution of the raw resonance spectra (color coded intensity, max=red, min=blue). The intensity of each spectrum is rescaled to the same dynamic range (panels (b) and (f)) and then normalized with the mean spectrum of the complete time series (panels (c) and (g)). The red crosses in panels (c) and (g) mark the resonance positions picked by visual inspection for calculating the radii of panels (d) and (h) and follow the spectra shift during evaporation (see text for details). Panels (d) and (h) shows the radius deduced from panels (c) and (g), respectively. The red lines are linear fits to the data: dr/dt = − 1.9 × 10−6 μm/s at T = 283 K (panel (d)) and dr/dt = −8.6 × 10−6 μm/s at T = 293 K (panel (h)).

Fig. 3.
Fig. 3.

Simulated evaporation behavior of an aggregate of spheres. Panel (a) shows the initial and final geometry of an aggregate of 7 spheres (Media 1) used for computing the temporal evolution (100 time steps) of the modeled optical resonance spectra (using a refractive index of 1.475 for NH 4 NO 3) plotted in panel (b) (color coded intensity) (Media 2). The largest and smallest spheres shrink from an initial size of r = 0.59 μm and r = 0.47 μm to a final one of r = 0.39 μm and r = 0.31 μm, respectively. Panel (c) shows the radius of the minimum enclosing sphere (black open circles, corresponding slope: 4.6 × 10−3 μm/step) and the radius deduced from the spectra in panel (b) (red solid circles, corresponding slope: 4.58 × 10−3 μm/step).

Fig. 4.
Fig. 4.

Simulated evaporation behavior of an aggregate of spheres with step by step rearrangement. Panel (a) shows the initial and final geometry of an aggregate of 9 spheres (Media 3) used for computing the temporal evolution (56 time steps) of the modeled optical resonance spectra plotted in panel (b) (color coded intensity) (Media 4). The largest and smallest spheres shrink from an initial size of r = 0.76 μm and r = 0.42 μm to a final one of r = 0.67 μm and r = 0.19 μm, respectively. Panel (c) shows the radius of the minimum enclosing sphere (black open circles, corresponding slope: 1.57 × 10−2 μm/step) and the radius deduced from the spectra in panel (b) (red solid circles, corresponding slope: 1.47 × 10−2 μm/step).

Fig. 5.
Fig. 5.

Vapor pressure of solid AN versus inverse temperature. Solid circles: this study; open circles: Brandner et al. [18], high temperature effusion method; open triangle: Krieger and Zardini [17], dynamic light scattering; dotted line: extrapolation of the Brandner et al. data for solid AN to lower temperatures, using his enthalpy of vaporization of ΔH = 178.7 kJ/mol. The solid line is a fit to our low temperature data yielding ΔH = 196.6 ± 12.2 kJ/mol and ptot = (9.11 ± 1.77) × 10−4 Pa at 298.15 K.

Fig. 6.
Fig. 6.

Evaporation behavior of a SA particle at T=298.5 K, RH slightly decreasing at RH≈50%, efflorescing at t = 20,197 s phase transition determined from 2-dimensional-angular scattering data, not shown here). Upper panel: temporal evolution of resonance spectra (color coded intensity). The deduced radius squared is plotted in the lower panel (black curve). Linear fits to datapoints for liquid and solid states yield dr 2/dt = 2.99 × 10−4 μm 2/s and dr 2/dt = 2.69 × 10−5 μm 2/s (dashed blue and orange lines, respectively).

Tables (1)

Tables Icon

Table 1. Vapor pressures of solid AN from evaporating particles at given temperatures. All experiments were performed in a N 2 atmosphere with 600 torr total pressure, diffusivities for HNO 3 and NH 3 were taken from Xue et al. [19], and Massman [20].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p tot = p NH 3 + p HNO 3 = 1 2 d r 2 dt RT ρ AN M AN ( 1 D NH 3 + 1 D HNO 3 ) ,
p tot = p tot exp [ Δ H R ( 1 T 1 T ) ]

Metrics