Abstract

Antireflective nanosponges are fabricated on poly crystalline silicon (poly-Si) thin films using Ag-nanoparticles (NPs) assisted etching. Crystal orientations and grain sizes of the poly-Si thin films are investigated for the poly-Si nanosponge formation and the resultant optical properties. The Ag-NPs assisted etching preferentially etches the poly-Si thin films along crystal orientation of [110]. A 400 nm thick poly-Si nanosponge reduces effective optical reflection of the poly-Si thin film with substrate crystal orientation of (110) and averaged grain size of 250 nm from 26 % to 3 % at the wavelengths ranging from 400 nm to 1000 nm. Carrier lifetimes were found to be 41 and 36 μs for poly-Si thin film and RTO-passivated nanosponges, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
    [CrossRef]
  2. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
    [CrossRef]
  3. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, "Rugate filter for light trapping in solar cells," Opt. Express 16, 9332-9343 (2008).
    [CrossRef] [PubMed]
  4. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Paxon, J. K. Kim, and E. F. Schubert, "Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm," Opt. Express 16, 5290-5298 (2008).
    [CrossRef] [PubMed]
  5. M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
    [CrossRef]
  6. C. N. Chen, J. Y. Chyan, C. M. Hsieh, and J. A. Yeh, "Nanoparticle-embedded actuator based on localized surface plasmon resonance," J. Opt. A: Pure Appl. Opt. 10044007-1-5 (2008).
    [CrossRef]
  7. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
    [CrossRef]
  8. J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).
  9. W. Joo, M. S. Park, and J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating," Langmuir 22, 7960-7963 (2006).
    [CrossRef] [PubMed]
  10. K. Q. Peng, J. Hu, Y, Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Adv. Funct. Mater. 16, 387-394 (2006).
    [CrossRef]
  11. S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
    [CrossRef]
  12. C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for solar cell applications," Phys. Status Solidi A 197, 502-506 (2003).
    [CrossRef]
  13. M. W. Jenkins, "A New Preferential Etch for Defects in Silicon Crystals," J. Electrochem. Soc. 124, 757-762 (1977).
    [CrossRef]
  14. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
    [CrossRef]
  15. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. T. Wu, "Enhanced light trapping based on guided mode resonance effect for thin film solar cells with two filling factor gratings," Opt. Express 16, 7969-7975 (2008).
    [CrossRef] [PubMed]

2008

2007

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

2006

W. Joo, M. S. Park, and J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating," Langmuir 22, 7960-7963 (2006).
[CrossRef] [PubMed]

K. Q. Peng, J. Hu, Y, Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Adv. Funct. Mater. 16, 387-394 (2006).
[CrossRef]

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
[CrossRef]

2003

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for solar cell applications," Phys. Status Solidi A 197, 502-506 (2003).
[CrossRef]

1977

M. W. Jenkins, "A New Preferential Etch for Defects in Silicon Crystals," J. Electrochem. Soc. 124, 757-762 (1977).
[CrossRef]

Ahrenkiel, R. K.

M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
[CrossRef]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

Atwar, H. A.

M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
[CrossRef]

Beaucarne, G.

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

Carnel, L.

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

Chang, J. Y.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Chen, M.

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Chhajed, S.

Fahr, S.

Fauchet, P. M.

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for solar cell applications," Phys. Status Solidi A 197, 502-506 (2003).
[CrossRef]

Fourmond, E.

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Fukumuro, N.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

Gordon, I.

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Hu, J.

K. Q. Peng, J. Hu, Y, Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Adv. Funct. Mater. 16, 387-394 (2006).
[CrossRef]

Huang, C. F.

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Jenkins, M. W.

M. W. Jenkins, "A New Preferential Etch for Defects in Silicon Crystals," J. Electrochem. Soc. 124, 757-762 (1977).
[CrossRef]

Joo, W.

W. Joo, M. S. Park, and J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating," Langmuir 22, 7960-7963 (2006).
[CrossRef] [PubMed]

Kaminski, A.

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

Kawagishi, T.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

Kim, J. K.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Paxon, J. K. Kim, and E. F. Schubert, "Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm," Opt. Express 16, 5290-5298 (2008).
[CrossRef] [PubMed]

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

W. Joo, M. S. Park, and J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating," Langmuir 22, 7960-7963 (2006).
[CrossRef] [PubMed]

Kirchartz, T.

Kobayashi, T.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

Lederer, F.

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Lee, Y. C.

Lellevre, J.-F.

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Lemiti, M.

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Lin, S. Y.

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Lipinski, M.

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Liu, W.

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Mason, M. S.

M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
[CrossRef]

Matsuda, H.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

Mont, F. W.

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Park, M. S.

W. Joo, M. S. Park, and J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating," Langmuir 22, 7960-7963 (2006).
[CrossRef] [PubMed]

Paxon, D. J.

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Peng, K. Q.

K. Q. Peng, J. Hu, Y, Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Adv. Funct. Mater. 16, 387-394 (2006).
[CrossRef]

Poortmans, J.

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

Rau, U.

Richarson, C. E.

M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
[CrossRef]

Rockstuhl, C.

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

Schubert, E. F.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Paxon, J. K. Kim, and E. F. Schubert, "Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm," Opt. Express 16, 5290-5298 (2008).
[CrossRef] [PubMed]

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Schubert, M. F.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Paxon, J. K. Kim, and E. F. Schubert, "Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm," Opt. Express 16, 5290-5298 (2008).
[CrossRef] [PubMed]

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Smart, J. A.

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Striemer, C. C.

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for solar cell applications," Phys. Status Solidi A 197, 502-506 (2003).
[CrossRef]

Ulbrich, C.

Van Gestel, D.

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

Wu, M. T.

Xi, J. -Q.

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Yae, S.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

Zieba, P.

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Adv. Funct. Mater.

K. Q. Peng, J. Hu, Y, Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Adv. Funct. Mater. 16, 387-394 (2006).
[CrossRef]

J. Electrochem. Soc.

M. W. Jenkins, "A New Preferential Etch for Defects in Silicon Crystals," J. Electrochem. Soc. 124, 757-762 (1977).
[CrossRef]

Langmuir

W. Joo, M. S. Park, and J. K. Kim, "Block copolymer film with sponge-like nanoporous strucutre for antireflection coating," Langmuir 22, 7960-7963 (2006).
[CrossRef] [PubMed]

Nature Nanotech.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nature Nanotech. 2, 770-774 (2007).
[CrossRef]

Nature Photon.

J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photon. 1, 176-179 (2007).

Opt. Express

Phys. Status Solidi A

C. C. Striemer and P. M. Fauchet, "Dynamic etching of silicon for solar cell applications," Phys. Status Solidi A 197, 502-506 (2003).
[CrossRef]

Phys. Status Solidi C

M. Lipinski, A. Kaminski, J.-F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba," Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing," Phys. Status Solidi C 4, 1566-1569 (2007).
[CrossRef]

Prog. Photovol: Res. Appl.

I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, "8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD," Prog. Photovol: Res. Appl. 15, 575-586 (2007).
[CrossRef]

Prog. Photovolt: Res. Appl.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Prog. Photovolt: Res. Appl. 15, 415-423 (2007).
[CrossRef]

Solar Energy

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, "Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching," Solar Energy 80, 701-706 (2006).
[CrossRef]

Thin Solid Film

M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, "Microsecond minority carrier lifetimes in HWCVD-grown films and implications for thin film solar cells," Thin Solid Film 501, 288-290 (2006).
[CrossRef]

Other

C. N. Chen, J. Y. Chyan, C. M. Hsieh, and J. A. Yeh, "Nanoparticle-embedded actuator based on localized surface plasmon resonance," J. Opt. A: Pure Appl. Opt. 10044007-1-5 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The XRD spectra of the as-deposited and the annealed poly-Si thin films.

Fig. 2.
Fig. 2.

The FESEM photos show (a) the as-deposited poly-Si thin film and (b) the annealed poly-Si thin film. The grain sizes of the as-deposited poly-Si thin film and the annealed poly-Si thin film range from 150 nm to 350nm and from 250 nm to 450 nm, respectively. The scalar bars represent 200nm, each.

Fig. 3.
Fig. 3.

(a) and (b) show the top view of the poly-Si nanosponges which are formed on (a) the as-deposited and on (b) the annealed poly-Si thin films, respectively. (c) and (d) show the cross-section view of the poly-Si nanosponges on (c) the as-deposited and on (d) the annealed poly-Si thin films, respectively. The scalar bars represent 200nm, each.

Fig. 4.
Fig. 4.

The optical reflection of the poly-Si nanosponge on (a) the as-deposited and on (b) the annealed poly-Si thin films

Fig. 5.
Fig. 5.

The effective carrier lifetime mappings of (a) the as-deposited poly-Si thin film, (b) the as-deposited poly-Si nanosponge and (c) the RTO-passivated poly-Si nanosponge. The effective carrier lifetimes are 41, 1 and 36 μs for (a), (b) and (c), respectively. Red color and black color refer to effective carrier lifetimes of 1 μs and 100 μs, respectively.

Fig. 6.
Fig. 6.

The optical reflection of the as-deposited poly-Si nanosponge (red line) and the as-deposited poly-Si nanosponge after RTO passivation (dot).

Metrics