Abstract

A very sensitive experimental setup for accurate wavelength-dependent hyper-Rayleigh scattering (HRS) measurements of the molecular first hyperpolarizability β in the broad fundamental wavelength range of 600 to 1800 nm is presented. The setup makes use of a stable continuously tunable picosecond optical parametric amplifier with kilohertz repetition rate. To correct for multi-photon fluorescence, a small spectral range around the second harmonic wavelength is detected in parallel using a spectrograph coupled to an intensified charge-coupled device. Reliable calibration against the pure solvent is possible over the full accessible spectral range. An extensive set of wavelength-dependent HRS calibration data for a wide range of solvents is presented, and very accurate measurements of the β dispersion of the well-known nonlinear optical chromophore Disperse Red 1 are demonstrated.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering

S. Stadler, R. Dietrich, G. Bourhill, and Ch. Bräuchle
Opt. Lett. 21(4) 251-253 (1996)

Ultrafast third order nonlinearities of organic solvents

K. Iliopoulos, D. Potamianos, E. Kakkava, P. Aloukos, I. Orfanos, and S. Couris
Opt. Express 23(19) 24171-24176 (2015)

Spectral content and dispersion of hyper-Rayleigh scattering

S. F. Hubbard, R. G. Petschek, and K. D. Singer
Opt. Lett. 21(21) 1774-1776 (1996)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, Orlando, 1987).
  2. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York, 1991).
  3. R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett. 14, 681–684 (1965).
    [Crossref]
  4. K. Clays and A. Persoons, “Hyper-Rayleigh Scattering in Solution”, Phys. Rev. Lett. 66, 2980–2983 (1991).
    [Crossref] [PubMed]
  5. J. Zyss and I. Ledoux, “Nonlinear Optics in Multipolar Media - Theory and Experiments”, Chem. Rev. 94, 77–105 (1994).
    [Crossref]
  6. S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
    [Crossref]
  7. P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores”, J. Chem. Phys. 105, 3918–3929 (1996).
    [Crossref]
  8. V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
    [Crossref]
  9. C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
    [Crossref]
  10. L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
    [Crossref] [PubMed]
  11. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment”, J. Chem. Phys. 66, 2664–2668 (1977).
    [Crossref]
  12. S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
    [Crossref]
  13. M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm”, Chem. Phys. Lett. 280, 544–550 (1997).
    [Crossref]
  14. C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
    [Crossref]
  15. A. M. Kelley, “Frequency-dependent first hyperpolarizabilities from linear absorption spectra”, J. Opt. Soc. Am. B-Opt. Phys. 19, 1890–1900 (2002).
    [Crossref]
  16. A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
    [Crossref]
  17. C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
    [Crossref]
  18. O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
    [Crossref] [PubMed]
  19. S. T. Hung, C. H. Wang, and A. M. Kelley, “Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules”, J. Chem. Phys. 123, (2005).
    [Crossref] [PubMed]
  20. L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
    [Crossref] [PubMed]
  21. L. C. T. Shoute, M. Blanchard-Desce, and A. M. Kelley, “Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene”, J. Phys. Chem. A 109, 10503–10511 (2005).
    [Crossref]
  22. L. C. T. Shoute, R. Helburn, and A. M. Kelley, “Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline”, J. Phys. Chem. A 111, 1251–1258 (2007).
    [Crossref] [PubMed]
  23. W. Leng and A. M. Kelley, “Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances”, J. Chem. Phys. 127, (2007).
    [Crossref] [PubMed]
  24. B. F. Levine and C. G. Bethea, “2nd and 3rd Order Hyperpolarizabilities of Organic-Molecules”, J. Chem. Phys. 63, 2666–2682 (1975).
    [Crossref]
  25. K. D. Singer and A. F. Garito, “Measurements of Molecular 2nd Order Optical Susceptibilities Using DC Induced 2nd Harmonic-Generation”, J. Chem. Phys. 75, 3572–3580 (1981).
    [Crossref]
  26. M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
    [Crossref]
  27. C. H. Wang, J. N. Woodford, and A. K. Y. Jen, “Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm”, Chem. Phys. 262, 475–487 (2000).
    [Crossref]
  28. J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
    [Crossref]
  29. J. L. Oudar, “Optical Nonlinearities of Conjugated Molecules - Stilbene Derivatives and Highly Polar Aromatic-Compounds”, J. Chem. Phys. 67, 446–457 (1977).
    [Crossref]
  30. A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
    [Crossref]
  31. G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime”, J. Chem. Phys. 112, 3997–4003 (2000).
    [Crossref]
  32. J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
    [Crossref]
  33. M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
    [Crossref]
  34. O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities β of fluorescent molecules”, Chem. Phys. Lett. 253, 145–150 (1996).
    [Crossref]
  35. S. Stadler, G. Bourhill, and C. Brauchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores”, J. Phys. Chem. 100, 6927–6934 (1996).
    [Crossref]
  36. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
    [Crossref]
  37. G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
    [Crossref]
  38. E. Goovaerts, W. Wenseleers, M. H. Garcia, and G. H. Cross, “Design and Characterization of Organic and Organometallic Molecules for Second Order Nonlinear Optics”, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001), Vol. 9, pp. 127–191.
    [Crossref]
  39. M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
    [Crossref]
  40. W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
    [Crossref]
  41. K. Clays, “Molecular nonlinear optics: From para-nitroaniline to electrochemical switching of the hyperpolarizability”, J. Nonlinear Opt. Phys. Mater. 12, 475–494 (2003).
    [Crossref]
  42. C. M. Savage and P. D. Maker, “Multichannel Photon Counting Spectrographic Detector System”, Appl. Opt. 10, 965 (1971).
    [Crossref] [PubMed]
  43. M. J. French and D. A. Long, “Versatile Computer-Controlled Spectrometer for Hyper Rayleigh and Hyper Raman-Spectroscopy“, J. Raman Spectrosc. 3, 391–406 (1975).
    [Crossref]
  44. V. N. Denisov, B. N. Mavrin, and V. B. Podobedov, “Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids”, Phys. Rep. 151, 1–92 (1987).
    [Crossref]
  45. P. Kaatz and D. P. Shelton, “Spectral measurements of hyper-Rayleigh light scattering”, Rev. Sci. Instrum. 67, 1438–1444 (1996).
    [Crossref]
  46. P. Kaatz and D. P. Shelton, “Collision induced hyper-Rayleigh light scattering in CCl4”, Mol. Phys. 88, 683–691 (1996).
    [Crossref]
  47. P. Kaatz and D. P. Shelton, “Spectral features of hyper-Rayleigh scattering in chloroform-d”, Opt. Commun. 157, 177–181 (1998).
    [Crossref]
  48. C. J. F. Böttcher, Dielectrics in Static Fields. (Elsevier, Amsterdam, 1973).
  49. M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
    [Crossref]
  50. F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions”, Phys. Rev. A: Gen. Phys. 36, 2210–2219 (1987).
    [Crossref]
  51. Infrared absorption spectra of these and other organic solvents can be found, for instance, in the references mentioned in O. H. Wheeler, “Near Infrared Spectra of Organic Compounds”, Chem. Rev.59, 629–666 (1959)). Absorption spectra starting from 3000 nm can also be consulted online in the NIST Standard Reference Database http://webbook.nist.gov/chemistry/, (2005), where 8700 different compounds are listed.
  52. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
    [Crossref]
  53. J. R. Partington, Physico-Chemical Optics. (Longmans, London, 1967).
  54. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared”, J. Appl. Phys. 94, 6167–6174 (2003).
    [Crossref]
  55. W. E. Forsythe, Smithsonian Physical Tables, 9 ed. (Smithsonian Institution, Washington, 1954, Table 551).
  56. International Critical Tables of Numerical Data, Physics, Chemistry and Technology. (Maple Press Company, York, PA, 1930).
  57. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. (John Wiley & Sons, Chichester, UK, 1997).
  58. R. C. Weast, CRC Handbook of Chemistry and Physics. (CRC, Boca Raton, FL, 1980).
  59. C. Marsden and S. Mann, Solvents Guide. (Cleaver-Hume, London, 1963).
  60. Chemist’s Handbook, edited by B. P. Nikolskii (Khimiya, Leningrad, 1965), Vol. 4.
  61. R. E. Kagarise, “Infrared Dispersion of Some Organic Liquids”, J. Opt. Soc. Am. 50, 36–39 (1960).
    [Crossref]
  62. J. R. Krivacic and D. W. Urry, “Ultraviolet and Visible Refractive Indices of Spectro-Quality Solvents”, Anal. Chem. 42, 596 (1970).
    [Crossref]
  63. J. E. Bertie and Z. Lan, “The Refractive-Index of Colorless Liquids in the Visible and Infrared - Contributions from the Absorption of Infrared and Ultraviolet-Radiation and the Electronic Molar Polarizability Below 20500 cm-1”, J. Chem. Phys. 103, 10152–10161 (1995).
    [Crossref]
  64. Concise Encyclopedia Chemistry, edited by H.-D. Jakubke and H. Jeschkeit (Walter de Gruyter Berlin, New York, 1994).
  65. J. Ans, E. Lax, and M. D. Lechner, Taschenbuch für Chemiker und Physiker: Physikalisch-chemische Daten. (Springer-Verlag Berlin Heidelberg, New York, 1992).
  66. E. Moreels, C. Degreef, and R. Finsy, “Laser-Light Refractometer”, Appl. Opt. 23, 3010–3013 (1984).
    [Crossref] [PubMed]
  67. A. F. ForziatiJ. Res. Natl. Bur. Stand. 44, 373 (1950).
  68. J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer”, Meas. Sci. Technol. 8, 601–605 (1997).
    [Crossref]
  69. D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
    [Crossref]
  70. M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
    [Crossref]
  71. J. M. Jung and H. Gress, “Single-photon absorption of liquid methanol and ethanol in the vacuum ultraviolet”, Chem. Phys. Lett. 359, 153–157 (2002).
    [Crossref]
  72. H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
    [Crossref]
  73. G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
    [Crossref]
  74. B. Trost, J. Stutz, and U. Platt, “UV-absorption cross sections of a series of monocyclic aromatic compounds”, Atmos. Environ. 31, 3999–4008 (1997).
    [Crossref]
  75. L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
    [Crossref]
  76. S. Stadler, R. Dietrich, G. Bourhill, and C. Brauchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering”, Opt. Lett. 21, 251–253 (1996).
    [Crossref] [PubMed]
  77. L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
    [Crossref]
  78. M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
    [Crossref]
  79. S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering”, Opt. Lett. 21, 1774–1776 (1996).
    [Crossref] [PubMed]
  80. S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
    [Crossref] [PubMed]
  81. S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
    [Crossref] [PubMed]
  82. C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
    [Crossref]

2008 (1)

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

2007 (2)

L. C. T. Shoute, R. Helburn, and A. M. Kelley, “Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline”, J. Phys. Chem. A 111, 1251–1258 (2007).
[Crossref] [PubMed]

W. Leng and A. M. Kelley, “Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances”, J. Chem. Phys. 127, (2007).
[Crossref] [PubMed]

2006 (2)

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

2005 (3)

S. T. Hung, C. H. Wang, and A. M. Kelley, “Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules”, J. Chem. Phys. 123, (2005).
[Crossref] [PubMed]

L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
[Crossref] [PubMed]

L. C. T. Shoute, M. Blanchard-Desce, and A. M. Kelley, “Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene”, J. Phys. Chem. A 109, 10503–10511 (2005).
[Crossref]

2004 (2)

O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
[Crossref] [PubMed]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[Crossref]

2003 (3)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared”, J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

K. Clays, “Molecular nonlinear optics: From para-nitroaniline to electrochemical switching of the hyperpolarizability”, J. Nonlinear Opt. Phys. Mater. 12, 475–494 (2003).
[Crossref]

C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
[Crossref]

2002 (3)

A. M. Kelley, “Frequency-dependent first hyperpolarizabilities from linear absorption spectra”, J. Opt. Soc. Am. B-Opt. Phys. 19, 1890–1900 (2002).
[Crossref]

A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
[Crossref]

J. M. Jung and H. Gress, “Single-photon absorption of liquid methanol and ethanol in the vacuum ultraviolet”, Chem. Phys. Lett. 359, 153–157 (2002).
[Crossref]

2001 (2)

C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
[Crossref]

C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
[Crossref]

2000 (3)

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

C. H. Wang, J. N. Woodford, and A. K. Y. Jen, “Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm”, Chem. Phys. 262, 475–487 (2000).
[Crossref]

G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime”, J. Chem. Phys. 112, 3997–4003 (2000).
[Crossref]

1999 (5)

J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
[Crossref]

D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
[Crossref]

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

1998 (4)

H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
[Crossref]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
[Crossref]

P. Kaatz and D. P. Shelton, “Spectral features of hyper-Rayleigh scattering in chloroform-d”, Opt. Commun. 157, 177–181 (1998).
[Crossref]

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

1997 (4)

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm”, Chem. Phys. Lett. 280, 544–550 (1997).
[Crossref]

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer”, Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

B. Trost, J. Stutz, and U. Platt, “UV-absorption cross sections of a series of monocyclic aromatic compounds”, Atmos. Environ. 31, 3999–4008 (1997).
[Crossref]

1996 (9)

P. Kaatz and D. P. Shelton, “Spectral measurements of hyper-Rayleigh light scattering”, Rev. Sci. Instrum. 67, 1438–1444 (1996).
[Crossref]

P. Kaatz and D. P. Shelton, “Collision induced hyper-Rayleigh light scattering in CCl4”, Mol. Phys. 88, 683–691 (1996).
[Crossref]

S. Stadler, R. Dietrich, G. Bourhill, and C. Brauchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering”, Opt. Lett. 21, 251–253 (1996).
[Crossref] [PubMed]

S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering”, Opt. Lett. 21, 1774–1776 (1996).
[Crossref] [PubMed]

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores”, J. Chem. Phys. 105, 3918–3929 (1996).
[Crossref]

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities β of fluorescent molecules”, Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

S. Stadler, G. Bourhill, and C. Brauchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores”, J. Phys. Chem. 100, 6927–6934 (1996).
[Crossref]

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

1995 (4)

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

J. E. Bertie and Z. Lan, “The Refractive-Index of Colorless Liquids in the Visible and Infrared - Contributions from the Absorption of Infrared and Ultraviolet-Radiation and the Electronic Molar Polarizability Below 20500 cm-1”, J. Chem. Phys. 103, 10152–10161 (1995).
[Crossref]

1994 (4)

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
[Crossref]

J. Zyss and I. Ledoux, “Nonlinear Optics in Multipolar Media - Theory and Experiments”, Chem. Rev. 94, 77–105 (1994).
[Crossref]

1992 (1)

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
[Crossref]

1991 (2)

K. Clays and A. Persoons, “Hyper-Rayleigh Scattering in Solution”, Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

1990 (1)

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

1987 (2)

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions”, Phys. Rev. A: Gen. Phys. 36, 2210–2219 (1987).
[Crossref]

V. N. Denisov, B. N. Mavrin, and V. B. Podobedov, “Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids”, Phys. Rep. 151, 1–92 (1987).
[Crossref]

1984 (1)

1981 (1)

K. D. Singer and A. F. Garito, “Measurements of Molecular 2nd Order Optical Susceptibilities Using DC Induced 2nd Harmonic-Generation”, J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

1977 (2)

J. L. Oudar, “Optical Nonlinearities of Conjugated Molecules - Stilbene Derivatives and Highly Polar Aromatic-Compounds”, J. Chem. Phys. 67, 446–457 (1977).
[Crossref]

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment”, J. Chem. Phys. 66, 2664–2668 (1977).
[Crossref]

1975 (2)

B. F. Levine and C. G. Bethea, “2nd and 3rd Order Hyperpolarizabilities of Organic-Molecules”, J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

M. J. French and D. A. Long, “Versatile Computer-Controlled Spectrometer for Hyper Rayleigh and Hyper Raman-Spectroscopy“, J. Raman Spectrosc. 3, 391–406 (1975).
[Crossref]

1971 (1)

1970 (1)

J. R. Krivacic and D. W. Urry, “Ultraviolet and Visible Refractive Indices of Spectro-Quality Solvents”, Anal. Chem. 42, 596 (1970).
[Crossref]

1965 (1)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett. 14, 681–684 (1965).
[Crossref]

1960 (1)

1950 (1)

A. F. ForziatiJ. Res. Natl. Bur. Stand. 44, 373 (1950).

Ans, J.

J. Ans, E. Lax, and M. D. Lechner, Taschenbuch für Chemiker und Physiker: Physikalisch-chemische Daten. (Springer-Verlag Berlin Heidelberg, New York, 1992).

Asato, A. E.

J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
[Crossref]

Balogh, D. T.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Bartholomew, G. P.

L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
[Crossref] [PubMed]

Baudin, J. B.

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

Baumgartel, H.

D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
[Crossref]

Bazan, G. C.

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
[Crossref] [PubMed]

Berkovic, G.

G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime”, J. Chem. Phys. 112, 3997–4003 (2000).
[Crossref]

Bertie, J. E.

J. E. Bertie and Z. Lan, “The Refractive-Index of Colorless Liquids in the Visible and Infrared - Contributions from the Absorption of Infrared and Ultraviolet-Radiation and the Electronic Molar Polarizability Below 20500 cm-1”, J. Chem. Phys. 103, 10152–10161 (1995).
[Crossref]

Bethea, C. G.

B. F. Levine and C. G. Bethea, “2nd and 3rd Order Hyperpolarizabilities of Organic-Molecules”, J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

Blanchard-Desce, M.

L. C. T. Shoute, M. Blanchard-Desce, and A. M. Kelley, “Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene”, J. Phys. Chem. A 109, 10503–10511 (2005).
[Crossref]

A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
[Crossref]

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

Bloor, D.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Böttcher, C. J. F.

C. J. F. Böttcher, Dielectrics in Static Fields. (Elsevier, Amsterdam, 1973).

Bourhill, G.

S. Stadler, G. Bourhill, and C. Brauchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores”, J. Phys. Chem. 100, 6927–6934 (1996).
[Crossref]

S. Stadler, R. Dietrich, G. Bourhill, and C. Brauchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering”, Opt. Lett. 21, 251–253 (1996).
[Crossref] [PubMed]

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Brandl, S.

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

Brasselet, S.

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

Brauchle, C.

S. Stadler, R. Dietrich, G. Bourhill, and C. Brauchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering”, Opt. Lett. 21, 251–253 (1996).
[Crossref] [PubMed]

S. Stadler, G. Bourhill, and C. Brauchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores”, J. Phys. Chem. 100, 6927–6934 (1996).
[Crossref]

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

Bredas, J. L.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Brion, C. E.

G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
[Crossref]

Burton, G. R.

G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
[Crossref]

Campo, J.

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

Chan, W. F.

G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
[Crossref]

Chemla, D. S.

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment”, J. Chem. Phys. 66, 2664–2668 (1977).
[Crossref]

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, Orlando, 1987).

Chen, J.

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Cheng, L. T.

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

Chien, L. C.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

Clays, K.

K. Clays, “Molecular nonlinear optics: From para-nitroaniline to electrochemical switching of the hyperpolarizability”, J. Nonlinear Opt. Phys. Mater. 12, 475–494 (2003).
[Crossref]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh Scattering in Solution”, Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

Cole, J. M.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Collin, J. E.

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

Cooper, G.

G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
[Crossref]

Cross, G.

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

Cross, G. H.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

E. Goovaerts, W. Wenseleers, M. H. Garcia, and G. H. Cross, “Design and Characterization of Organic and Organometallic Molecules for Second Order Nonlinear Optics”, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001), Vol. 9, pp. 127–191.
[Crossref]

da Piedade, M. F. M.

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

Dalton, L. R.

C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
[Crossref]

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Degreef, C.

Dejonge, R.

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

Delwiche, J.

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

Denisov, V. N.

V. N. Denisov, B. N. Mavrin, and V. B. Podobedov, “Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids”, Phys. Rep. 151, 1–92 (1987).
[Crossref]

Denning, R. G.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

Dhanabalan, A.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Dias, A. R.

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

Diemeer, M.

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Dietrich, R.

S. Stadler, R. Dietrich, G. Bourhill, and C. Brauchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering”, Opt. Lett. 21, 251–253 (1996).
[Crossref] [PubMed]

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

Duarte, M. T.

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

Edard, F.

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

Egolf, D. S.

A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
[Crossref]

Feiner, F.

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

Finsy, R.

Flipse, M. C.

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

Forsythe, W. E.

W. E. Forsythe, Smithsonian Physical Tables, 9 ed. (Smithsonian Institution, Washington, 1954, Table 551).

Forziati, A. F.

A. F. ForziatiJ. Res. Natl. Bur. Stand. 44, 373 (1950).

French, M. J.

M. J. French and D. A. Long, “Versatile Computer-Controlled Spectrometer for Hyper Rayleigh and Hyper Raman-Spectroscopy“, J. Raman Spectrosc. 3, 391–406 (1975).
[Crossref]

Friedli, A. C.

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

Garcia, M. H.

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

E. Goovaerts, W. Wenseleers, M. H. Garcia, and G. H. Cross, “Design and Characterization of Organic and Organometallic Molecules for Second Order Nonlinear Optics”, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001), Vol. 9, pp. 127–191.
[Crossref]

Garito, A. F.

K. D. Singer and A. F. Garito, “Measurements of Molecular 2nd Order Optical Susceptibilities Using DC Induced 2nd Harmonic-Generation”, J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

Gerbrandij, A. W.

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

Giacometti, J. A.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Gocheldupuis, M.

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

Gompper, R.

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

Goovaerts, E.

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

E. Goovaerts, W. Wenseleers, M. H. Garcia, and G. H. Cross, “Design and Characterization of Organic and Organometallic Molecules for Second Order Nonlinear Optics”, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001), Vol. 9, pp. 127–191.
[Crossref]

Gorman, C. B.

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Grahn, W.

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

Gress, H.

J. M. Jung and H. Gress, “Single-photon absorption of liquid methanol and ethanol in the vacuum ultraviolet”, Chem. Phys. Lett. 359, 153–157 (2002).
[Crossref]

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[Crossref]

Harper, A.

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Hayashi, H.

H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
[Crossref]

Helburn, R.

L. C. T. Shoute, R. Helburn, and A. M. Kelley, “Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline”, J. Phys. Chem. A 111, 1251–1258 (2007).
[Crossref] [PubMed]

Howard, J. A. K.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Hsu, C. C.

C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
[Crossref]

Hubbard, S. F.

Hubinfranskin, M. J.

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

Hulst, N. F. van

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities β of fluorescent molecules”, Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

Hung, S. T.

S. T. Hung, C. H. Wang, and A. M. Kelley, “Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules”, J. Chem. Phys. 123, (2005).
[Crossref] [PubMed]

Jager, M.

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Jen, A. K. Y.

O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
[Crossref] [PubMed]

C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
[Crossref]

C. H. Wang, J. N. Woodford, and A. K. Y. Jen, “Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm”, Chem. Phys. 262, 475–487 (2000).
[Crossref]

Jenneskens, L. W.

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

Jochims, H. W.

D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
[Crossref]

Joffre, M.

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
[Crossref]

Jullien, L.

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

Jung, J. M.

J. M. Jung and H. Gress, “Single-photon absorption of liquid methanol and ethanol in the vacuum ultraviolet”, Chem. Phys. Lett. 359, 153–157 (2002).
[Crossref]

Kaatz, P.

P. Kaatz and D. P. Shelton, “Spectral features of hyper-Rayleigh scattering in chloroform-d”, Opt. Commun. 157, 177–181 (1998).
[Crossref]

P. Kaatz and D. P. Shelton, “Collision induced hyper-Rayleigh light scattering in CCl4”, Mol. Phys. 88, 683–691 (1996).
[Crossref]

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores”, J. Chem. Phys. 105, 3918–3929 (1996).
[Crossref]

P. Kaatz and D. P. Shelton, “Spectral measurements of hyper-Rayleigh light scattering”, Rev. Sci. Instrum. 67, 1438–1444 (1996).
[Crossref]

Kagarise, R. E.

Kajzar, F.

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions”, Phys. Rev. A: Gen. Phys. 36, 2210–2219 (1987).
[Crossref]

Kao, C. C.

H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
[Crossref]

Kelley, A. M.

L. C. T. Shoute, R. Helburn, and A. M. Kelley, “Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline”, J. Phys. Chem. A 111, 1251–1258 (2007).
[Crossref] [PubMed]

W. Leng and A. M. Kelley, “Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances”, J. Chem. Phys. 127, (2007).
[Crossref] [PubMed]

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

S. T. Hung, C. H. Wang, and A. M. Kelley, “Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules”, J. Chem. Phys. 123, (2005).
[Crossref] [PubMed]

L. C. T. Shoute, M. Blanchard-Desce, and A. M. Kelley, “Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene”, J. Phys. Chem. A 109, 10503–10511 (2005).
[Crossref]

L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
[Crossref] [PubMed]

A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
[Crossref]

A. M. Kelley, “Frequency-dependent first hyperpolarizabilities from linear absorption spectra”, J. Opt. Soc. Am. B-Opt. Phys. 19, 1890–1900 (2002).
[Crossref]

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[Crossref]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[Crossref]

Koser, J.

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer”, Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Kotler, Z.

G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime”, J. Chem. Phys. 112, 3997–4003 (2000).
[Crossref]

Krivacic, J. R.

J. R. Krivacic and D. W. Urry, “Ultraviolet and Visible Refractive Indices of Spectro-Quality Solvents”, Anal. Chem. 42, 596 (1970).
[Crossref]

Laidlaw, W. M.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

Lan, Z.

J. E. Bertie and Z. Lan, “The Refractive-Index of Colorless Liquids in the Visible and Infrared - Contributions from the Absorption of Infrared and Ultraviolet-Radiation and the Electronic Molar Polarizability Below 20500 cm-1”, J. Chem. Phys. 103, 10152–10161 (1995).
[Crossref]

Lax, E.

J. Ans, E. Lax, and M. D. Lechner, Taschenbuch für Chemiker und Physiker: Physikalisch-chemische Daten. (Springer-Verlag Berlin Heidelberg, New York, 1992).

Lechner, M. D.

J. Ans, E. Lax, and M. D. Lechner, Taschenbuch für Chemiker und Physiker: Physikalisch-chemische Daten. (Springer-Verlag Berlin Heidelberg, New York, 1992).

Ledoux, I.

J. Zyss and I. Ledoux, “Nonlinear Optics in Multipolar Media - Theory and Experiments”, Chem. Rev. 94, 77–105 (1994).
[Crossref]

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions”, Phys. Rev. A: Gen. Phys. 36, 2210–2219 (1987).
[Crossref]

Lee, M.

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Leng, W.

W. Leng and A. M. Kelley, “Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances”, J. Chem. Phys. 127, (2007).
[Crossref] [PubMed]

Levine, B. F.

B. F. Levine and C. G. Bethea, “2nd and 3rd Order Hyperpolarizabilities of Organic-Molecules”, J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

Lin, Y. C.

C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
[Crossref]

Liu, R. S. H.

J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
[Crossref]

Liu, S.

C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
[Crossref]

Long, D. A.

M. J. French and D. A. Long, “Versatile Computer-Controlled Spectrometer for Hyper Rayleigh and Hyper Raman-Spectroscopy“, J. Raman Spectrosc. 3, 391–406 (1975).
[Crossref]

Lorne, R.

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

Ma, H.

O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
[Crossref] [PubMed]

Maker, P. D.

C. M. Savage and P. D. Maker, “Multichannel Photon Counting Spectrographic Detector System”, Appl. Opt. 10, 965 (1971).
[Crossref] [PubMed]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett. 14, 681–684 (1965).
[Crossref]

Malagoli, M.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Mann, S.

C. Marsden and S. Mann, Solvents Guide. (Cleaver-Hume, London, 1963).

Marder, S. R.

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

Marsden, C.

C. Marsden and S. Mann, Solvents Guide. (Cleaver-Hume, London, 1963).

Marsman, A. W.

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

Mavrin, B. N.

V. N. Denisov, B. N. Mavrin, and V. B. Podobedov, “Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids”, Phys. Rep. 151, 1–92 (1987).
[Crossref]

Mendes, P. J.

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

Mendonca, C. R.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Meredith, G. R.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

Meshulam, G.

G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime”, J. Chem. Phys. 112, 3997–4003 (2000).
[Crossref]

Meyers, F.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Misoguti, L.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Moran, A. M.

A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
[Crossref]

Moreels, E.

Morrison, I. D.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. (John Wiley & Sons, Chichester, UK, 1997).

Noordman, O. F. J.

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities β of fluorescent molecules”, Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

Olbrechts, G.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
[Crossref]

Oliveira, O. N.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Ostroverkhov, V.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

Otomo, A.

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Oudar, J. L.

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment”, J. Chem. Phys. 66, 2664–2668 (1977).
[Crossref]

J. L. Oudar, “Optical Nonlinearities of Conjugated Molecules - Stilbene Derivatives and Highly Polar Aromatic-Compounds”, J. Chem. Phys. 67, 446–457 (1977).
[Crossref]

Partington, J. R.

J. R. Partington, Physico-Chemical Optics. (Longmans, London, 1967).

Pauley, M. A.

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm”, Chem. Phys. Lett. 280, 544–550 (1997).
[Crossref]

Pawlik, A.

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

Pereira-da-Silva, M. A.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Perry, J. W.

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Persoons, A.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh Scattering in Solution”, Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

Petschek, R. G.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering”, Opt. Lett. 21, 1774–1776 (1996).
[Crossref] [PubMed]

Pierce, B. M.

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Platt, U.

B. Trost, J. Stutz, and U. Platt, “UV-absorption cross sections of a series of monocyclic aromatic compounds”, Atmos. Environ. 31, 3999–4008 (1997).
[Crossref]

Podobedov, V. B.

V. N. Denisov, B. N. Mavrin, and V. B. Podobedov, “Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids”, Phys. Rep. 151, 1–92 (1987).
[Crossref]

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York, 1991).

Ren, A.

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Rheims, J.

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer”, Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Rikken, G.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

Robalo, M. P.

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

Rodrigues, J. C.

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

Ruel, O.

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared”, J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

Santos, D. S. dos

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Savage, C. M.

C. M. Savage and P. D. Maker, “Multichannel Photon Counting Spectrographic Detector System”, Appl. Opt. 10, 965 (1971).
[Crossref] [PubMed]

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett. 14, 681–684 (1965).
[Crossref]

Schulz, C.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[Crossref]

Seccombe, D. P.

D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
[Crossref]

Shelton, D. P.

P. Kaatz and D. P. Shelton, “Spectral features of hyper-Rayleigh scattering in chloroform-d”, Opt. Commun. 157, 177–181 (1998).
[Crossref]

P. Kaatz and D. P. Shelton, “Collision induced hyper-Rayleigh light scattering in CCl4”, Mol. Phys. 88, 683–691 (1996).
[Crossref]

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores”, J. Chem. Phys. 105, 3918–3929 (1996).
[Crossref]

P. Kaatz and D. P. Shelton, “Spectral measurements of hyper-Rayleigh light scattering”, Rev. Sci. Instrum. 67, 1438–1444 (1996).
[Crossref]

Shoute, L. C. T.

L. C. T. Shoute, R. Helburn, and A. M. Kelley, “Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline”, J. Phys. Chem. A 111, 1251–1258 (2007).
[Crossref] [PubMed]

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

L. C. T. Shoute, M. Blanchard-Desce, and A. M. Kelley, “Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene”, J. Phys. Chem. A 109, 10503–10511 (2005).
[Crossref]

L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
[Crossref] [PubMed]

Silbey, R. J.

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
[Crossref]

Singer, K. D.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering”, Opt. Lett. 21, 1774–1776 (1996).
[Crossref] [PubMed]

K. D. Singer and A. F. Garito, “Measurements of Molecular 2nd Order Optical Susceptibilities Using DC Induced 2nd Harmonic-Generation”, J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

Skindhoj, J.

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

Stadler, S.

S. Stadler, R. Dietrich, G. Bourhill, and C. Brauchle, “Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering”, Opt. Lett. 21, 251–253 (1996).
[Crossref] [PubMed]

S. Stadler, G. Bourhill, and C. Brauchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores”, J. Phys. Chem. 100, 6927–6934 (1996).
[Crossref]

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

Stammers, M. A.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

Stegeman, G. I.

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Stevenson, S. H.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

Strobbe, R.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
[Crossref]

Stutz, J.

B. Trost, J. Stutz, and U. Platt, “UV-absorption cross sections of a series of monocyclic aromatic compounds”, Atmos. Environ. 31, 3999–4008 (1997).
[Crossref]

Sukhomlinova, L.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

Szablewski, M.

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Tai, O. Y.

C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
[Crossref]

Tai, O. Y. H.

O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
[Crossref] [PubMed]

Tam, W.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

Teixeira, A. P. S.

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

Terhune, R. W.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett. 14, 681–684 (1965).
[Crossref]

Thomas, P. R.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Thornton, A.

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

Tiemann, B. G.

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

Todorova, G.

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Tronc, M.

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

Trost, B.

B. Trost, J. Stutz, and U. Platt, “UV-absorption cross sections of a series of monocyclic aromatic compounds”, Atmos. Environ. 31, 3999–4008 (1997).
[Crossref]

Tuckett, R. P.

D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
[Crossref]

Twieg, R. J.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

Udagawa, Y.

H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
[Crossref]

Urry, D. W.

J. R. Krivacic and D. W. Urry, “Ultraviolet and Visible Refractive Indices of Spectro-Quality Solvents”, Anal. Chem. 42, 596 (1970).
[Crossref]

Vak, D.

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

Vanwalree, C. A.

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

Wang, C. C.

C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
[Crossref]

Wang, C. H.

S. T. Hung, C. H. Wang, and A. M. Kelley, “Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules”, J. Chem. Phys. 123, (2005).
[Crossref] [PubMed]

O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
[Crossref] [PubMed]

C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
[Crossref]

C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
[Crossref]

C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
[Crossref]

C. H. Wang, J. N. Woodford, and A. K. Y. Jen, “Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm”, Chem. Phys. 262, 475–487 (2000).
[Crossref]

J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
[Crossref]

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm”, Chem. Phys. Lett. 280, 544–550 (1997).
[Crossref]

Wang, F.

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Wang, S. X.

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

Watanabe, N.

H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
[Crossref]

Weast, R. C.

R. C. Weast, CRC Handbook of Chemistry and Physics. (CRC, Boca Raton, FL, 1980).

Wenseleers, W.

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

E. Goovaerts, W. Wenseleers, M. H. Garcia, and G. H. Cross, “Design and Characterization of Organic and Organometallic Molecules for Second Order Nonlinear Optics”, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001), Vol. 9, pp. 127–191.
[Crossref]

Williams, D. J.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York, 1991).

Woo, H. Y.

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

Woodford, J. N.

C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
[Crossref]

C. H. Wang, J. N. Woodford, and A. K. Y. Jen, “Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm”, Chem. Phys. 262, 475–487 (2000).
[Crossref]

J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
[Crossref]

Woudenberg, R. H.

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

Wriedt, T.

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer”, Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Yaron, D.

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
[Crossref]

Zhang, C.

C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
[Crossref]

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

Zilio, S. C.

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Zyss, J.

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

J. Zyss and I. Ledoux, “Nonlinear Optics in Multipolar Media - Theory and Experiments”, Chem. Rev. 94, 77–105 (1994).
[Crossref]

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
[Crossref]

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions”, Phys. Rev. A: Gen. Phys. 36, 2210–2219 (1987).
[Crossref]

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, Orlando, 1987).

Anal. Chem. (1)

J. R. Krivacic and D. W. Urry, “Ultraviolet and Visible Refractive Indices of Spectro-Quality Solvents”, Anal. Chem. 42, 596 (1970).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Otomo, M. Jager, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers”, Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Atmos. Environ. (1)

B. Trost, J. Stutz, and U. Platt, “UV-absorption cross sections of a series of monocyclic aromatic compounds”, Atmos. Environ. 31, 3999–4008 (1997).
[Crossref]

Chem. Phys. (2)

G. R. Burton, W. F. Chan, G. Cooper, and C. E. Brion, “Valence-Shell and Inner-Shell (Cl 2p, 2s, C 1s) Photoabsorption and Photoionization of Carbon-Tetrachloride - Absolute Oscillator-Strengths (5–400 eV) and Dipole-Induced Breakdown Pathways”, Chem. Phys. 181, 147–172 (1994).
[Crossref]

C. H. Wang, J. N. Woodford, and A. K. Y. Jen, “Measurements of the first hyperpolarizabilities of thiophene-based charge-transfer chromophores with hyper-Rayleigh scattering at 1064 and 1907 nm”, Chem. Phys. 262, 475–487 (2000).
[Crossref]

Chem. Phys. Lett. (6)

M. C. Flipse, R. Dejonge, R. H. Woudenberg, A. W. Marsman, C. A. Vanwalree, and L. W. Jenneskens, “The Determination of First Hyperpolarizabilities β Using Hyper-Rayleigh Scattering - a Caveat”, Chem. Phys. Lett. 245, 297–303 (1995).
[Crossref]

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: Measuring first hyperpolarizabilities β of fluorescent molecules”, Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

S. Stadler, F. Feiner, C. Brauchle, S. Brandl, and R. Gompper, “Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution”, Chem. Phys. Lett. 245, 292–296 (1995).
[Crossref]

S. Stadler, R. Dietrich, G. Bourhill, C. Brauchle, A. Pawlik, and W. Grahn, “First hyperpolarizability measurements via hyper-Rayleigh scattering at 1500 nm”, Chem. Phys. Lett. 247, 271–276 (1995).
[Crossref]

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm”, Chem. Phys. Lett. 280, 544–550 (1997).
[Crossref]

J. M. Jung and H. Gress, “Single-photon absorption of liquid methanol and ethanol in the vacuum ultraviolet”, Chem. Phys. Lett. 359, 153–157 (2002).
[Crossref]

Chem. Rev. (1)

J. Zyss and I. Ledoux, “Nonlinear Optics in Multipolar Media - Theory and Experiments”, Chem. Rev. 94, 77–105 (1994).
[Crossref]

Eur. J. Inorg. Chem. (1)

M. P. Robalo, A. P. S. Teixeira, M. H. Garcia, M. F. M. da Piedade, M. T. Duarte, A. R. Dias, J. Campo, W. Wenseleers, and E. Goovaerts, “Synthesis, characterisation and molecular hyperpolarisabilities of pseudooctahedral hydrido(nitrile)iron(II) complexes for nonlinear optics: X-ray structure of [Fe(H)(dppe)2(4-NCC6H4NO2)][PF6]·CH2Cl2”, Eur. J. Inorg. Chem., 2175–2185 (2006).
[Crossref]

Ind. Eng. Chem. Res. (1)

L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, “Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics”, Ind. Eng. Chem. Res. 38, 8–33 (1999).
[Crossref]

J. Am. Chem. Soc. (2)

M. Gocheldupuis, J. Delwiche, M. J. Hubinfranskin, J. E. Collin, F. Edard, and M. Tronc, “Electron-Energy Loss Spectroscopy of the Outer Valence Shells of Acetonitrile and Methyl Isocyanide”, J. Am. Chem. Soc. 112, 5425–5431 (1990).
[Crossref]

M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: Synthesis, physical characterization, and theoretical aspects”, J. Am. Chem. Soc. 119, 3144–3154 (1997).
[Crossref]

J. Appl. Phys. (2)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared”, J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, “Resonant and nonresonant hyper-Rayleigh scattering of charge-transfer chromophores”, J. Appl. Phys. 89, 4209–4217 (2001).
[Crossref]

J. Chem. Phys. (18)

L. C. T. Shoute, H. Y. Woo, D. Vak, G. C. Bazan, and A. M. Kelley, “Solvent effects on resonant first hyperpolarizabilities and Raman and hyper-Raman spectra of DANS and a water-soluble analog”, J. Chem. Phys. 125, 054506 (2006).
[Crossref] [PubMed]

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment”, J. Chem. Phys. 66, 2664–2668 (1977).
[Crossref]

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores”, J. Chem. Phys. 105, 3918–3929 (1996).
[Crossref]

C. C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering”, J. Chem. Phys. 114, 7103–7108 (2001).
[Crossref]

A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: Julolidinemalononitrile”, J. Chem. Phys. 116, 2542–2555 (2002).
[Crossref]

C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K. Y. Jen, “Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong charge-transfer chromophore”, J. Chem. Phys. 119, 6237–6244 (2003).
[Crossref]

O. Y. H. Tai, C. H. Wang, H. Ma, and A. K. Y. Jen, “Wavelength dependence of first molecular hyperpolarizability of a dendrimer in solution”, J. Chem. Phys. 121, 6086–6092 (2004).
[Crossref] [PubMed]

S. T. Hung, C. H. Wang, and A. M. Kelley, “Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules”, J. Chem. Phys. 123, (2005).
[Crossref] [PubMed]

L. C. T. Shoute, G. P. Bartholomew, G. C. Bazan, and A. M. Kelley, “Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: One-photon and two-photon states”, J. Chem. Phys. 122, (2005).
[Crossref] [PubMed]

J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm”, J. Chem. Phys. 111, 4621–4628 (1999).
[Crossref]

J. L. Oudar, “Optical Nonlinearities of Conjugated Molecules - Stilbene Derivatives and Highly Polar Aromatic-Compounds”, J. Chem. Phys. 67, 446–457 (1977).
[Crossref]

G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime”, J. Chem. Phys. 112, 3997–4003 (2000).
[Crossref]

W. Leng and A. M. Kelley, “Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances”, J. Chem. Phys. 127, (2007).
[Crossref] [PubMed]

B. F. Levine and C. G. Bethea, “2nd and 3rd Order Hyperpolarizabilities of Organic-Molecules”, J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

K. D. Singer and A. F. Garito, “Measurements of Molecular 2nd Order Optical Susceptibilities Using DC Induced 2nd Harmonic-Generation”, J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

M. Joffre, D. Yaron, R. J. Silbey, and J. Zyss, “2nd-Order Optical Nonlinearity in Octupolar Aromatic Systems”, J. Chem. Phys. 97, 5607–5615 (1992).
[Crossref]

H. Hayashi, N. Watanabe, Y. Udagawa, and C. C. Kao, “Optical spectra of liquid water in vacuum UV region by means of inelastic X-ray scattering spectroscopy”, J. Chem. Phys. 108, 823–825 (1998).
[Crossref]

J. E. Bertie and Z. Lan, “The Refractive-Index of Colorless Liquids in the Visible and Infrared - Contributions from the Absorption of Infrared and Ultraviolet-Radiation and the Electronic Molar Polarizability Below 20500 cm-1”, J. Chem. Phys. 103, 10152–10161 (1995).
[Crossref]

J. Mater. Chem. (1)

W. Wenseleers, A. W. Gerbrandij, E. Goovaerts, M. H. Garcia, M. P. Robalo, P. J. Mendes, J. C. Rodrigues, and A. R. Dias, “Hyper-Rayleigh scattering study of η5-monocyclopentadienyl-metal complexes for second order non-linear optical materials”, J. Mater. Chem. 8, 925–930 (1998).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

K. Clays, “Molecular nonlinear optics: From para-nitroaniline to electrochemical switching of the hyperpolarizability”, J. Nonlinear Opt. Phys. Mater. 12, 475–494 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B-Opt. Phys. (2)

A. M. Kelley, “Frequency-dependent first hyperpolarizabilities from linear absorption spectra”, J. Opt. Soc. Am. B-Opt. Phys. 19, 1890–1900 (2002).
[Crossref]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S. X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. B-Opt. Phys. 17, 1531–1542 (2000).
[Crossref]

J. Phys. Chem. (2)

S. Stadler, G. Bourhill, and C. Brauchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores”, J. Phys. Chem. 100, 6927–6934 (1996).
[Crossref]

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities 1. Methods and Results on Benzene and Stilbene Derivatives”, J. Phys. Chem. 95, 10631–10643 (1991).
[Crossref]

J. Phys. Chem. A (2)

L. C. T. Shoute, M. Blanchard-Desce, and A. M. Kelley, “Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene”, J. Phys. Chem. A 109, 10503–10511 (2005).
[Crossref]

L. C. T. Shoute, R. Helburn, and A. M. Kelley, “Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline”, J. Phys. Chem. A 111, 1251–1258 (2007).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. Campo, W. Wenseleers, E. Goovaerts, M. Szablewski, and G. Cross, “Accurate Determination and Modeling of the Dispersion of the First Hyperpolarizability of an Efficient Zwitterionic Nonlinear Optical Chromophore by Tunable Wavelength Hyper-Rayleigh Scattering”, J. Phys. Chem. C 112, 287–296 (2008).
[Crossref]

J. Raman Spectrosc. (1)

M. J. French and D. A. Long, “Versatile Computer-Controlled Spectrometer for Hyper Rayleigh and Hyper Raman-Spectroscopy“, J. Raman Spectrosc. 3, 391–406 (1975).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

A. F. ForziatiJ. Res. Natl. Bur. Stand. 44, 373 (1950).

Macromolecules (1)

C. R. Mendonca, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. dos Santos, M. A. Pereira-da-Silva, J. A. Giacometti, S. C. Zilio, and O. N. Oliveira, “Optically induced birefringence and surface relief gratings in composite Langmuir-Blodgett (LB) films of poly[4’-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene (HPDR13) and cadmium stearate”, Macromolecules 32, 1493–1499 (1999).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer”, Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Mol. Phys. (1)

P. Kaatz and D. P. Shelton, “Collision induced hyper-Rayleigh light scattering in CCl4”, Mol. Phys. 88, 683–691 (1996).
[Crossref]

Opt. Commun. (1)

P. Kaatz and D. P. Shelton, “Spectral features of hyper-Rayleigh scattering in chloroform-d”, Opt. Commun. 157, 177–181 (1998).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

M. Blanchard-Desce, J. B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet, and J. Zyss, “Towards highly efficient nonlinear optical chromophores: molecular engineering of octupolar molecules”, Opt. Mater. 12, 333–338 (1999).
[Crossref]

Phys. Chem. Chem. Phys. (2)

D. P. Seccombe, R. P. Tuckett, H. Baumgartel, and H. W. Jochims, “Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV”, Phys. Chem. Chem. Phys. 1, 773–782 (1999).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures”, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004).
[Crossref]

Phys. Rep. (1)

V. N. Denisov, B. N. Mavrin, and V. B. Podobedov, “Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids”, Phys. Rep. 151, 1–92 (1987).
[Crossref]

Phys. Rev. A: Gen. Phys. (1)

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions”, Phys. Rev. A: Gen. Phys. 36, 2210–2219 (1987).
[Crossref]

Phys. Rev. Lett. (2)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett. 14, 681–684 (1965).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh Scattering in Solution”, Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

P. Kaatz and D. P. Shelton, “Spectral measurements of hyper-Rayleigh light scattering”, Rev. Sci. Instrum. 67, 1438–1444 (1996).
[Crossref]

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering”, Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering”, Rev. Sci. Instrum. 69, 2233–2241 (1998).
[Crossref]

Science (2)

S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj, “Large 1st Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond-Length Alternation and Aromaticity”, Science 263, 511–514 (1994).
[Crossref] [PubMed]

S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, and B. M. Pierce, “A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes”, Science 265, 632–635 (1994).
[Crossref] [PubMed]

Other (14)

Concise Encyclopedia Chemistry, edited by H.-D. Jakubke and H. Jeschkeit (Walter de Gruyter Berlin, New York, 1994).

J. Ans, E. Lax, and M. D. Lechner, Taschenbuch für Chemiker und Physiker: Physikalisch-chemische Daten. (Springer-Verlag Berlin Heidelberg, New York, 1992).

Infrared absorption spectra of these and other organic solvents can be found, for instance, in the references mentioned in O. H. Wheeler, “Near Infrared Spectra of Organic Compounds”, Chem. Rev.59, 629–666 (1959)). Absorption spectra starting from 3000 nm can also be consulted online in the NIST Standard Reference Database http://webbook.nist.gov/chemistry/, (2005), where 8700 different compounds are listed.

C. J. F. Böttcher, Dielectrics in Static Fields. (Elsevier, Amsterdam, 1973).

W. E. Forsythe, Smithsonian Physical Tables, 9 ed. (Smithsonian Institution, Washington, 1954, Table 551).

International Critical Tables of Numerical Data, Physics, Chemistry and Technology. (Maple Press Company, York, PA, 1930).

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. (John Wiley & Sons, Chichester, UK, 1997).

R. C. Weast, CRC Handbook of Chemistry and Physics. (CRC, Boca Raton, FL, 1980).

C. Marsden and S. Mann, Solvents Guide. (Cleaver-Hume, London, 1963).

Chemist’s Handbook, edited by B. P. Nikolskii (Khimiya, Leningrad, 1965), Vol. 4.

J. R. Partington, Physico-Chemical Optics. (Longmans, London, 1967).

E. Goovaerts, W. Wenseleers, M. H. Garcia, and G. H. Cross, “Design and Characterization of Organic and Organometallic Molecules for Second Order Nonlinear Optics”, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa (Academic Press, 2001), Vol. 9, pp. 127–191.
[Crossref]

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, Orlando, 1987).

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for wavelength-dependent hyper-Rayleigh scattering measurements. BS: beamsplitter, L(S)WP: long (short) wavelength pass filter, BBO: β-barium borate frequency-doubling crystal, DM: dichroic mirror, PD: photodiode, L1–L4 : cylindrical lenses, M: mirror, CM1,2: confocal mirrors, CL: collection lens, PS: polarization scrambler, FL: focusing lens.

Fig. 2.
Fig. 2.

Example of an HRS measurement (at the excitation wavelength of 1072 nm), clearly illustrating that correction for multi-photon fluorescence (red line) is needed. Blue: HRS signal of the solution, green: reference signal of the pure solvent.

Fig. 3.
Fig. 3.

UV-VIS-NIR absorption spectra of various solvents (1 cm path length), measured as received from commercial sources (see text).

Fig. 4.
Fig. 4.

HRS measurements of eight different solvents calibrated against chloroform. The β dispersion of chloroform itself is estimated using the undamped two-level model (dashed line in Fig. (a)). Symbols: experimental HRS data (except for chloroform, for which the calibration value is shown), lines: undamped two-level models (see Table 2 for the used λ eg values).

Fig. 5.
Fig. 5.

Vapor-phase UV absorption of various solvents. (a) DMF (black curve) and pentafluorobenzonitrile (red curve), (b) acetone and (c) toluene.

Fig. 6.
Fig. 6.

Experimental HRS data obtained for Disperse Red 1 (DR1) in chloroform (black squares), acetonitrile (at shorter wavelengths, green squares) and pentafluorobenzonitrile (at longer wavelengths, red squares), corrected for the β dispersion of the pure solvents, and shown together with the UV-VIS absorption spectrum of DR1 in chloroform at the 2nd harmonic wavelength (solid curve).

Tables (2)

Tables Icon

Table 1. Parameters used in the one-term Sellmeier expression [n(λ)2 = 1+A 1 λ 2/(λ 2-λ 1 2)] to describe the refractive index dispersion of the pure solvents studied here. The references mentioned in the last column contain the experimental data to which the expression is fitted.

Tables Icon

Table 2. Parameters of the undamped TLM for the various solvents, corresponding to the curves in Fig. 4: the UV transition wavelength λ eg, the effective static first hyperpolarizability βeff zzz,0, and the orientational average 〈β2 0 〉=〈∥β XZZ,0 2〉+〈∥β ZZZ,0 2〉 multiplied with the number density of the solvent (as a measure for the HRS signal).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S solvent ( 2 ω ) N solvent β solvent 2 ( P ( ω ) ) 2
S solution ( 2 ω ) ( N solvent β solvent 2 + N solute β solute 2 ) ( P ( ω ) ) 2 .
β solute 2 = N solvent N solute S solution ( 2 ω ) S solvent ( 2 ω ) S solvent ( 2 ω ) β solvent 2 .
β 2 = β XZZ 2 + β ZZZ 2 = 6 35 β zzz 2 .
β zzz eff , solute = N solvent N solute S solution ( 2 ω ) S solvent ( 2 ω ) S solvent ( 2 ω ) β zzz eff , solvent .
S solvent ( 2 ω ) n ω 1 n 2 ω 2 T ω 2 T 2 ω f ω 4 f 2 ω 2 N β solvent 2 ( P Z ( ω ) ) 2 ,
f ω = ε ω + 2 3 ,

Metrics