Abstract

An intra-chip coupling scheme from optical fibers to silicon strip waveguides is demonstrated. The couplers consist of silicon inverse width tapers embedded within silicon dioxide cantilevers that are deflected out-of-plane by residual stress. Deflection angles from 5 to 30 degrees are obtained and controlled by thermal annealing. Butt-coupling from tapered fibers or collimation-coupling from lensed fibers may be employed. The coupling scheme enables direct access to devices on the entire chip surface without dicing or cleaving the chip. Coupling efficiencies of 1.6 dB per connection for TE polarization and 2 dB per connection for TM polarization are achieved. The coupling efficiency shows little wavelength-dependence, with less than 1.6 dB fluctuation over the wavelength range of 1500 nm to 1560 nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
    [CrossRef]
  2. T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
    [CrossRef]
  3. H. M. Presby, A. F. Benner, and C. A. Edwards, "Laser micromachining of efficient fiber microlenses," Appl. Opt. 29, 2692-2695 (1990).
    [CrossRef] [PubMed]
  4. G. Milton, Y. Gharbia, and J. Katupitiya, "Mechanical fabrication of precision microlenses on optical fiber endfaces," Opt. Eng. 44, 123402 (2005).
    [CrossRef]
  5. N. Kawasaki, M. Umetsu, H. Yoda, H. Tsuchiya, K. Shiraishi, K. Watanabe, and S. Shikano, "A novel lensed fiber with a focused spot diameter as small as the wavelength," in Proceedings of IEEE Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Institude of Electrical and Electronics Engineers, New York, 2007), paper OWI2.
    [CrossRef] [PubMed]
  6. D. X. Dai, S. L. He, and H.-K. Tsang, "Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide," J. Lightwave Technol. 24, 2428-2433 (2006).
    [CrossRef]
  7. J. K. Doylend and A. P. Knights, "Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1363-1370 (2006).
    [CrossRef]
  8. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
    [CrossRef]
  9. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
    [CrossRef]
  10. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  12. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, M. T. Doan, "Mode transformer for miniaturized optical circuits," Opt. Lett. 30, 498-500 (2005).
    [CrossRef] [PubMed]
  13. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).
  14. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2004).
    [CrossRef]
  15. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
    [CrossRef]
  16. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
    [CrossRef]
  17. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J.-M. Fedeli, L. El Melhaoui, "Light injection in SOI microwaveguides using high-efficiency grating couplers," J. Lightwave Technol. 24, 3810-3815 (2006).
    [CrossRef]
  18. G. Masanovic, G. Reed, W. Headley, B. Timotijevic, V. Passaro, R. Atta, G. Ensell, A. Evans, "A high efficiency input/output coupler for small silicon photonic devices," Opt. Express 13, 7374-7379 (2005).
    [CrossRef] [PubMed]
  19. D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004).
    [CrossRef] [PubMed]
  20. P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
    [CrossRef]
  21. R. Ulrich, "Theory of the prism-film coupler by plane-wave analysis," J. Opt. Soc. Am. 60, 1337-1350 (1970).
    [CrossRef]
  22. Z. Lu and D. Prather, "Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices," Opt. Lett. 29, 1748-1750 (2004).
    [CrossRef] [PubMed]
  23. I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
    [CrossRef]
  24. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. J. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006).
    [CrossRef] [PubMed]
  25. C. Grillet, C. Monat, C. Smith, B. Eggleton, D. Moss, S. Frederick, D. Dalacu, P. Poole, J. Lapointe, G. Aers, and R. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007).
    [CrossRef] [PubMed]
  26. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
    [CrossRef]
  27. D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, 1982), Chap. 9.
  28. E. Ollier, "Optical MEMS devices based on moving waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 155-162 (2002).
    [CrossRef]
  29. J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
    [CrossRef]
  30. J. W. Noh, R. Anderson, S. H. Kim, J. Cardenas, and G. P. Nordin, "In-plane photonic transduction of silicon-on-insulator microcantilevers," Opt. Express 16, 12114-12123 (2008).
    [CrossRef] [PubMed]
  31. R. Charavel, B. Olbrechts, and J. P. Raskin, "Stress release of PECVD oxide by RTA," Proc. SPIE 5116, 596-606 (1993).
    [CrossRef]

2008 (1)

2007 (3)

C. Grillet, C. Monat, C. Smith, B. Eggleton, D. Moss, S. Frederick, D. Dalacu, P. Poole, J. Lapointe, G. Aers, and R. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007).
[CrossRef] [PubMed]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
[CrossRef]

2006 (7)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

J. K. Doylend and A. P. Knights, "Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1363-1370 (2006).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. J. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006).
[CrossRef] [PubMed]

D. X. Dai, S. L. He, and H.-K. Tsang, "Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide," J. Lightwave Technol. 24, 2428-2433 (2006).
[CrossRef]

L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J.-M. Fedeli, L. El Melhaoui, "Light injection in SOI microwaveguides using high-efficiency grating couplers," J. Lightwave Technol. 24, 3810-3815 (2006).
[CrossRef]

2005 (5)

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, M. T. Doan, "Mode transformer for miniaturized optical circuits," Opt. Lett. 30, 498-500 (2005).
[CrossRef] [PubMed]

G. Masanovic, G. Reed, W. Headley, B. Timotijevic, V. Passaro, R. Atta, G. Ensell, A. Evans, "A high efficiency input/output coupler for small silicon photonic devices," Opt. Express 13, 7374-7379 (2005).
[CrossRef] [PubMed]

G. Milton, Y. Gharbia, and J. Katupitiya, "Mechanical fabrication of precision microlenses on optical fiber endfaces," Opt. Eng. 44, 123402 (2005).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

2004 (4)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2004).
[CrossRef]

Z. Lu and D. Prather, "Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices," Opt. Lett. 29, 1748-1750 (2004).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004).
[CrossRef] [PubMed]

2003 (2)

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

2002 (3)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

E. Ollier, "Optical MEMS devices based on moving waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 155-162 (2002).
[CrossRef]

2000 (1)

T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
[CrossRef]

1993 (1)

R. Charavel, B. Olbrechts, and J. P. Raskin, "Stress release of PECVD oxide by RTA," Proc. SPIE 5116, 596-606 (1993).
[CrossRef]

1990 (1)

1970 (1)

Aers, G.

Agarwal, A.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Alder, T.

T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
[CrossRef]

Almeida, V. R.

Anderson, R.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Atta, R.

Baets, R.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Benner, A. F.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Bogaerts, W.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Borselli, M.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
[CrossRef]

Cardenas, J.

Cassan, E.

Charavel, R.

R. Charavel, B. Olbrechts, and J. P. Raskin, "Stress release of PECVD oxide by RTA," Proc. SPIE 5116, 596-606 (1993).
[CrossRef]

Cheben, P.

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

Chrystal, C.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Dai, D. X.

Dalacu, D.

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Delage, A.

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

Doan, M. T.

Doylend, J. K.

J. K. Doylend and A. P. Knights, "Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1363-1370 (2006).
[CrossRef]

Dubey, M.

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Dumon, P.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

Edwards, C. A.

Eggleton, B.

El Melhaoui, L.

Ensell, G.

Evans, A.

Fedeli, J.-M.

Frederick, S.

Freeman, D.

Fukuda, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

Gharbia, Y.

G. Milton, Y. Gharbia, and J. Katupitiya, "Mechanical fabrication of precision microlenses on optical fiber endfaces," Opt. Eng. 44, 123402 (2005).
[CrossRef]

Grillet, C.

Grillot, F.

He, S. L.

Headley, W.

Heinzelmann, R.

T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
[CrossRef]

Hoepfner, C.

Hong, C.-Y.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Hwang, I. K.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Ikedo, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Itabashi, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

Jager, D.

T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
[CrossRef]

Janz, S.

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

Johnson, T. J.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
[CrossRef]

Katupitiya, J.

G. Milton, Y. Gharbia, and J. Katupitiya, "Mechanical fabrication of precision microlenses on optical fiber endfaces," Opt. Eng. 44, 123402 (2005).
[CrossRef]

Kim, S. H.

J. W. Noh, R. Anderson, S. H. Kim, J. Cardenas, and G. P. Nordin, "In-plane photonic transduction of silicon-on-insulator microcantilevers," Opt. Express 16, 12114-12123 (2008).
[CrossRef] [PubMed]

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Kim, S. K.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Kimerling, L. C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, M. T. Doan, "Mode transformer for miniaturized optical circuits," Opt. Lett. 30, 498-500 (2005).
[CrossRef] [PubMed]

Knights, A. P.

J. K. Doylend and A. P. Knights, "Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1363-1370 (2006).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Lamontagne, B.

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

Lapointe, J.

Lardenois, S.

Laval, S.

Lee, K. K.

Lee, S. H.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Lee, Y. H.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Lim, D. R.

Lipson, M.

Lu, Z.

Luther-Davies, B.

Madden, S.

Magi, E.

Manolatou, C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Marris-Morini, D.

Masanovic, G.

McNab, S.

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2004).
[CrossRef]

Michael, C. P.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
[CrossRef]

Michel, J.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Milton, G.

G. Milton, Y. Gharbia, and J. Katupitiya, "Mechanical fabrication of precision microlenses on optical fiber endfaces," Opt. Eng. 44, 123402 (2005).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Moll, N.

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2004).
[CrossRef]

Monat, C.

Montalbo, T.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Morita, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Moss, D.

Moss, D. J.

Nguyen, V.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Noh, J. W.

Nordin, G. P.

Oh, W.-Y.

Ohshima, A.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

Olbrechts, B.

R. Charavel, B. Olbrechts, and J. P. Raskin, "Stress release of PECVD oxide by RTA," Proc. SPIE 5116, 596-606 (1993).
[CrossRef]

Ollier, E.

E. Ollier, "Optical MEMS devices based on moving waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 155-162 (2002).
[CrossRef]

Painter, O.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 16, 4745-4752 (2007).
[CrossRef]

Pan, D.

Panepucci, R. R.

Pascal, D.

Passaro, V.

Piekarski, B.

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Polcawich, R.

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Poole, P.

Prather, D.

Presby, H. M.

Pulskamp, J. S.

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Raskin, J. P.

R. Charavel, B. Olbrechts, and J. P. Raskin, "Stress release of PECVD oxide by RTA," Proc. SPIE 5116, 596-606 (1993).
[CrossRef]

Reed, G.

Roelkens, G.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

Shiraishi, K.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

Shoji, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Smith, C.

Smith, G.

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Stohr, A.

T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
[CrossRef]

Taillaert, D.

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Takahashi, J.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

Takahashi, M.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

Tamechika, E.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

Tanev, S.

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

Timotijevic, B.

Tsai, C. S.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

Tsang, H.-K.

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

Ulrich, R.

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Van Thourhout, D.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Vivien, L.

Vlasov, Y.

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2004).
[CrossRef]

Wada, K.

Watanabe, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Wickenden, A.

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Williams, R.

Xu, D. X.

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Yamada, K.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Yang, J. K.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Yap, K. P.

Yasaitis, J.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

Yoda, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, "Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems," Appl. Phys. Lett. 88, 081112 (2006).
[CrossRef]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, "A silicon-based spot-size converter between single mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007).
[CrossRef]

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3µm square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

E. Ollier, "Optical MEMS devices based on moving waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 155-162 (2002).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices," IEEE J. Sel. Top. Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

J. K. Doylend and A. P. Knights, "Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 1363-1370 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, "Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography," IEEE Photon. Technol. Lett. 17, 2613-2615 (2005).
[CrossRef]

P. Cheben, S. Janz, D. X. Xu, B. Lamontagne, A. Delage, and S. Tanev, "A broad-band waveguide grating coupler with a subwavelength grating mirror," IEEE Photon. Technol. Lett. 18, 13-15 (2006).
[CrossRef]

IEICE Trans. Electron. (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. 87, 351-358 (2004).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

J. S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, and G. Smith, "Mitigation of residual film stress deformation in multilayer microelectromechanical systems cantilever devices," J. Vac. Sci. Technol. B 21, 2482-2486 (2003).
[CrossRef]

Opt. Eng. (1)

G. Milton, Y. Gharbia, and J. Katupitiya, "Mechanical fabrication of precision microlenses on optical fiber endfaces," Opt. Eng. 44, 123402 (2005).
[CrossRef]

Opt. Express (5)

Opt. Express. (1)

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2004).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

R. Charavel, B. Olbrechts, and J. P. Raskin, "Stress release of PECVD oxide by RTA," Proc. SPIE 5116, 596-606 (1993).
[CrossRef]

Other (2)

D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, 1982), Chap. 9.

N. Kawasaki, M. Umetsu, H. Yoda, H. Tsuchiya, K. Shiraishi, K. Watanabe, and S. Shikano, "A novel lensed fiber with a focused spot diameter as small as the wavelength," in Proceedings of IEEE Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Institude of Electrical and Electronics Engineers, New York, 2007), paper OWI2.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the SiO2 cantilever couplers: a Si inverse width taper is embedded within a SiO2 cantilever. The released end of the SiO2 cantilever deflects out-of-plane due to stress. A tapered optical fiber butt-coupled to the SiO2 cantilever enables intra-chip light coupling.

Fig. 2.
Fig. 2.

Top view of the two-step mode conversion from a Si strip waveguide to a butt-coupled tapered optical fiber. The Si waveguide mode is converted to the evanescent mode in the cantilevers by inverse tapers. The evanescent mode is then converted to the optical fiber mode.

Fig. 3.
Fig. 3.

Contour maps of primary electric fields at the tip of a 40 μm long Si inverse width taper in SiO2 cladding. Light propagates along Z-axis. The taper tip is outlined by solid lines and the SiO2 cantilever design is outlined by white dashed lines. The delocalized TE and TM modes are well confined within a 4 μm × 2.1 μm cross section.

Fig. 4.
Fig. 4.

Scanning electron micrographs of silicon strip waveguides: (a) 40 μm long inverse taper with 100 nm wide tip (b) 450 nm wide waveguide without taper.

Fig. 5.
Fig. 5.

Fabrication process for the cantilever couplers: (a) initial silicon circuits, (b) deposition of PECVD SiO2, (c) deposition of the Ti/Ni mask, (d) FIB direct writing of patterns on the Ti/Ni mask, (e) reactive ion etching to release SiO2 cantilevers, (f) removal of the Ti/Ni mask.

Fig. 6.
Fig. 6.

Scanning electron micrographs of released cantilevers: (a) Maximum deflection and tilt angle at the end of a 40 μm long SiO2 cantilever with silicon core in the center are 2.6 μm and 4.7° respectively. Cross-sectional dimensions of the cantilever are 3.85 μm × 2.1 μm. (b) 5 μm long, 1.2 μm wide SiO2 struts are used as mechanical anchors.

Fig. 7.
Fig. 7.

The deflection of the cantilever couplers can be controlled by using RTA.

Fig. 8.
Fig. 8.

(a). Schematic of measurement setup; (b). Oblique view (30°) visible light micrograph of two tapered fibers coupled to two back-to-back cantilever couplers; the chip surface produces mirror images. (c). Top view infrared micrograph of 1.55 μm wavelength light injected intra-chip into a 750 μm long silicon strip waveguide.

Fig. 9.
Fig. 9.

Back-to-back insertion loss measurements versus propagation length at 1.55 μm wavelength yield a fiber-to-waveguide coupling loss of 1.6 dB per connection for TE polarization and 2 dB per connection for TM polarization with inverse tapers. The waveguide length includes the input and output cantilever couplers. The abrupt decrease of insertion loss of Si waveguides without tapers indicates the formation of air-backed SiO2 microfibers. (a) TE polarization. (b) TM polarization.

Fig. 10.
Fig. 10.

The measured insertion loss of cantilever-coupled Si waveguides with inverse tapers changes by less than 1.6 dB from 1500 nm to 1560 nm (TE polarization). Fabry-Perot cavity effects dominate when the silicon waveguide consists of only the input and output tapers.

Metrics