Abstract

We demonstrate that the efficiency of CO2 laser writing of long-period fiber gratings in a solid-core photonic crystal fiber (PCF) can be enhanced greatly by applying tension to the fiber during the writing process through the mechanism of frozen-in viscoelasticity. Using this mechanism, we are able to write strong gratings in PCFs with a dosage of CO2 laser radiation low enough not to cause any significant fiber structure deformation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
    [CrossRef]
  2. K. S. Chiang and Q. Liu, "Long-period gratings for application in optical communications," Proc. 5th International Conference on Optical Communications and Networks and 2nd International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006) (Chengdu, China, Sept. 2006), 128−133 (2006).
  3. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49−R61 (2003).
    [CrossRef]
  4. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  5. Y. Zhu, P. Shum, H. J. Chong, M. K. Rao, and C. Lu, "Strong resonance and a highly compact long period grating in a large mode area photonic crystal fiber," Opt. Express 11, 1900-1905 (2003).
    [CrossRef] [PubMed]
  6. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
    [CrossRef] [PubMed]
  7. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, "In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber," Opt. Lett. 32, 1035-1037 (2007).
    [CrossRef] [PubMed]
  8. H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008).
    [CrossRef]
  9. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, "Long period gratings in air-core photonic bandgap fibers," Opt. Express 16, 2784-2790 (2008).
    [CrossRef] [PubMed]
  10. Z. He, Y. Zhu, and H. Du, "Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution," Appl. Phys. Lett. 92, 044105 (2008).
    [CrossRef]
  11. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
    [CrossRef] [PubMed]
  12. Z. He, Y. Zhu, and H. Du, "Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber," Opt. Express 15, 1804-1810 (2007).
    [CrossRef] [PubMed]
  13. P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
    [CrossRef] [PubMed]
  14. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
    [CrossRef] [PubMed]
  15. A. A. Fotiadi, G. Brambilla, T. Ernst, S. A. Slattery, and D. N. Nikogosyan, "TPA-induced long-period gratings in photonic crystal fiber: inscription and temperature sensing properties," J. Opt. Soc. Am. B 24, 1475-1481 (2007).
    [CrossRef]
  16. G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
    [CrossRef]
  17. K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long period grating written in a pure silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22, 625-630 (2004).
    [CrossRef]
  18. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
    [CrossRef]
  19. H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
    [CrossRef]
  20. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
    [CrossRef]
  21. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).
  22. Y. Liu and K. S. Chiang, "CO2 laser writing of long-period fiber gratings in optical fibers under tension," Opt. Lett. 33, 1933-1935 (2008).
    [CrossRef] [PubMed]
  23. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
    [CrossRef]
  24. A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004).
    [CrossRef]
  25. E. Salik, D. S. Starodubov, and J. Feinberg, "Increase of photosensitivity in Ge-doped fibers under strain," Opt. Lett. 25, 1147-1149 (2000).
    [CrossRef]
  26. R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
    [CrossRef]
  27. G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
    [CrossRef]
  28. G. Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun. 281, 255-259 (2008).
    [CrossRef]

2008 (6)

H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, "Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution," Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

G. Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun. 281, 255-259 (2008).
[CrossRef]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, "Long period gratings in air-core photonic bandgap fibers," Opt. Express 16, 2784-2790 (2008).
[CrossRef] [PubMed]

Y. Liu and K. S. Chiang, "CO2 laser writing of long-period fiber gratings in optical fibers under tension," Opt. Lett. 33, 1933-1935 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (6)

P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
[CrossRef] [PubMed]

G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
[CrossRef]

G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

2004 (5)

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004).
[CrossRef]

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
[CrossRef] [PubMed]

K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long period grating written in a pure silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22, 625-630 (2004).
[CrossRef]

2003 (3)

Y. Zhu, P. Shum, H. J. Chong, M. K. Rao, and C. Lu, "Strong resonance and a highly compact long period grating in a large mode area photonic crystal fiber," Opt. Express 11, 1900-1905 (2003).
[CrossRef] [PubMed]

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49−R61 (2003).
[CrossRef]

2002 (1)

2000 (2)

E. Salik, D. S. Starodubov, and J. Feinberg, "Increase of photosensitivity in Ge-doped fibers under strain," Opt. Lett. 25, 1147-1149 (2000).
[CrossRef]

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Bang, O.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Birks, T. A.

Brambilla, G.

Chiang, K. S.

H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008).
[CrossRef]

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

Y. Liu and K. S. Chiang, "CO2 laser writing of long-period fiber gratings in optical fibers under tension," Opt. Lett. 33, 1933-1935 (2008).
[CrossRef] [PubMed]

Chong, H. J.

Chung, Y.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Du, H.

Z. He, Y. Zhu, and H. Du, "Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution," Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, "Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber," Opt. Express 15, 1804-1810 (2007).
[CrossRef] [PubMed]

Dufva, M.

Eggleton, B. J.

P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
[CrossRef] [PubMed]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Ernst, T.

Feinberg, J.

Fervrier, S.

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Fotiadi, A. A.

Han, W. T.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

Han, Y.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

He, Z.

Z. He, Y. Zhu, and H. Du, "Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution," Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, "Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber," Opt. Express 15, 1804-1810 (2007).
[CrossRef] [PubMed]

Ho, H. L.

Hoiby, P. E.

Humbert, G.

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Iredale, T. B.

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49−R61 (2003).
[CrossRef]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Jensen, J. B.

Jin, W.

Ju, J.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Kakarantzas, G.

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Kim, C. S.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

Kim, J. C.

Lee, B. H.

J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
[CrossRef] [PubMed]

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

Lee, H. W.

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008).
[CrossRef]

Lee, K. S.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Lim, J. H.

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Liu, Y.

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

Y. Liu and K. S. Chiang, "CO2 laser writing of long-period fiber gratings in optical fibers under tension," Opt. Lett. 33, 1933-1935 (2008).
[CrossRef] [PubMed]

H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008).
[CrossRef]

Lu, C.

Magi, E. C.

Malki, A.

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Miyake, Y.

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Moore, E. D.

Morishita, K.

Nikogosyan, D. N.

Paek, U. C.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

Pafnous, D.

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Pedersen, L. H.

Rao, M. K.

Rao, Y. J.

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Rego, G.

G. Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun. 281, 255-259 (2008).
[CrossRef]

Rego, G. M

G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

Rindorf, L.

Roy, P.

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

Russell, P. St. J.

Salgado, H. M.

G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

Salik, E.

Santos, J. L.

G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

Shum, P.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Slattery, S. A.

Slavík, R.

R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
[CrossRef]

Starodubov, D. S.

Steinvurzel, P.

P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
[CrossRef] [PubMed]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49−R61 (2003).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

Wang, D.

Wang, D. N.

Wang, Y.

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Xiao, L.

Xuan, H.

Yablon, A. D.

A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Zhu, T.

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

Zhu, Y.

Appl. Phys. Lett. (2)

Z. He, Y. Zhu, and H. Du, "Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution," Appl. Phys. Lett. 92, 044105 (2008).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004).
[CrossRef]

Electron. Lett. (3)

G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003).
[CrossRef]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
[CrossRef]

H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008).
[CrossRef]

J. Lightwave Technol (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996).
[CrossRef]

J. Lightwave Technol. (2)

K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long period grating written in a pure silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22, 625-630 (2004).
[CrossRef]

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49−R61 (2003).
[CrossRef]

Opt. Commun. (3)

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000).
[CrossRef]

G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006).
[CrossRef]

G. Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun. 281, 255-259 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Other (1)

K. S. Chiang and Q. Liu, "Long-period gratings for application in optical communications," Proc. 5th International Conference on Optical Communications and Networks and 2nd International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006) (Chengdu, China, Sept. 2006), 128−133 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical image of the pure-silica solid-core PCF used in the experiments.

Fig. 2.
Fig. 2.

Variations of (a) the grating contrast and (b) the resonance wavelength with the number of scanning cycles for the gratings written in an untensioned PCF, a PCF tensioned with a 175-g weight, and a PCF tensioned with a 220-g weight at a CO2-laser energy density of 1.8 J/mm2, together with the transmission spectra of the gratings written in (c) the PCF tensioned with a 175-g weight and (d) the PCF tensioned with a 220-g weight, measured at 255 scanning cycles.

Fig. 3.
Fig. 3.

(a). The grating written in a tensioned fiber bent naturally when the fiber was set free after the grating had been written. (b). Erasure of the grating by further CO2-laser irradiation on the grating with the applied tension removed.

Fig. 4.
Fig. 4.

(Left) Variation of the grating contrast with the number of scanning cycles for the gratings written in an untensioned PCF and a PCF tensioned with a 60-g weight at a CO2-laser energy density of 2.9 J/mm2. (Right) Transmission spectra of (A) the grating written in the tensioned PCF with 5 scanning cycles and (B) the grating written in the untensioned PCF with 85 scanning cycles.

Fig. 5.
Fig. 5.

(Left) Transmission spectra of gratings written in an untensioned PCF with 17 scanning cycles and a PCF tensioned with a 220-g weight with one scanning cycle at a CO2-laser energy density of 5.1 J/mm2. (Right) Microscope images of the untensioned PCF after one scanning cycle, the tensioned PCF after one scanning cycle, and the untensioned PCF after 17 scanning cycles.

Metrics