Abstract

A mode-locked Er-doped fiber laser was triggered to synchronize with a separate ultrashort picosecond Yb-doped fiber laser by cross phase modulation. Square nanosecond pulses were generated in the long-cavity Er-fiber laser by the peak intensity clamp effect while the synchronization maintained. At the maximum pump power of 450 mW, a synchronous laser pulse duration of 5.5 ns has been achieved. This synchronous nanosecond and picosecond system has shown a large length mismatch tolerance of 2.6 mm and can work stably for days.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stolow and D. M. Jonas, "Multidimensional snapshots of chemical dynamics," Science 305, 1575-1577 (2004).
    [CrossRef] [PubMed]
  2. E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
    [CrossRef]
  3. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
    [CrossRef]
  4. A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, "Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator," Opt. Lett. 28, 663-665 (2003).
    [CrossRef] [PubMed]
  5. D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, and K. Torizuka, "Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train," Opt. Lett. 31, 3243-3245 (2006).
    [CrossRef] [PubMed]
  6. D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, "100-attosecond timing jitter between two-color mode-locked lasers by active-passive hybrid synchronization," Opt. Lett. 30, 1408-1410 (2005).
    [CrossRef] [PubMed]
  7. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414-416 (1996).
    [CrossRef] [PubMed]
  8. R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, and A. Stabini, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B. 79, 693-700 (2004).
    [CrossRef]
  9. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
    [CrossRef]
  10. R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
    [CrossRef]
  11. P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 18409- 18414 (2007).
    [CrossRef] [PubMed]
  12. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  13. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scatteringmicroscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  14. S. Xu, H. Zhai, Z. Xu, Y. Peng, K. Wu, and H. Zeng, "Accurate all-optical synchronization of 1064 nm pulses with 794 nm femtosecond pulses for optical parametric chirped pulse amplification," Opt. Express 14, 2487- 2496 (2006).
    [CrossRef] [PubMed]
  15. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature (London) 412, 798-802 (2001).
    [CrossRef]
  16. V. J. Matsas, T. P. Newson, and M. N. Zervas, "Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching," Opt. Commun. 92, 61-66 (1992).
    [CrossRef]
  17. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, New York, 2001).
  18. C. J. Zhu, J. F. He, and S. C. Wang, "Generation of synchronized femtosecond and picosecond pulses in a dualwavelength femtosecond Ti:sapphire laser," Opt. Lett. 30, 561-563 (2005).
    [CrossRef] [PubMed]
  19. M. Rusu, R. Herda, and O. G. Okhotnikov, "Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity," Opt. Lett. 29, 2246-2248 (2004).
    [CrossRef] [PubMed]
  20. M. Rusu, R. Herda, and O. G. Okhotnikov, "1.05-m mode-locked Ytterbium fiber laser stabilized with the pulse train from a 1.54-m laser diode," Opt. Express 12, 5258-5262 (2004).
    [CrossRef] [PubMed]
  21. A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
    [CrossRef] [PubMed]

2007 (2)

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 18409- 18414 (2007).
[CrossRef] [PubMed]

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (5)

M. Rusu, R. Herda, and O. G. Okhotnikov, "Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity," Opt. Lett. 29, 2246-2248 (2004).
[CrossRef] [PubMed]

M. Rusu, R. Herda, and O. G. Okhotnikov, "1.05-m mode-locked Ytterbium fiber laser stabilized with the pulse train from a 1.54-m laser diode," Opt. Express 12, 5258-5262 (2004).
[CrossRef] [PubMed]

A. Stolow and D. M. Jonas, "Multidimensional snapshots of chemical dynamics," Science 305, 1575-1577 (2004).
[CrossRef] [PubMed]

R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, and A. Stabini, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B. 79, 693-700 (2004).
[CrossRef]

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

2003 (2)

2002 (1)

2001 (1)

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature (London) 412, 798-802 (2001).
[CrossRef]

2000 (1)

1997 (1)

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

1996 (2)

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414-416 (1996).
[CrossRef] [PubMed]

1992 (1)

V. J. Matsas, T. P. Newson, and M. N. Zervas, "Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

Ansell, S.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Balling, P.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Bartels, A.

Baum, P.

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 18409- 18414 (2007).
[CrossRef] [PubMed]

Bennington, S.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Broome, T.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Burgy, F.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Chambaret, J. P.

Chattopadhyay, S.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Cheng, J. X.

Cheriaux, G.

Chin, A. H.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Collier, J. L.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Diddams, S. A.

Dunne, M.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Faure, J.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Findlay, D.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Gardner, I.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Glinec, Y.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Glover, T. E.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Gordienko, S.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Hamm, P.

He, J. F.

Herda, R.

Hilligsøe, K. M.

Hollberg, L.

Jonas, D. M.

A. Stolow and D. M. Jonas, "Multidimensional snapshots of chemical dynamics," Science 305, 1575-1577 (2004).
[CrossRef] [PubMed]

Jones, D. J.

Kaindl, R. A.

Kakehata, M.

Keiding, S. R.

Kim, K.-J.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Kiselev, S.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Kobayashi, Y.

Kodama, R.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature (London) 412, 798-802 (2001).
[CrossRef]

Langley, A. J.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Larsen, J. J.

Leemans, W. P.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Lefebvre, E.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Malka, V.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Matousek, P.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Matsas, V. J.

V. J. Matsas, T. P. Newson, and M. N. Zervas, "Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

Nelmes, R.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Newson, T. P.

V. J. Matsas, T. P. Newson, and M. N. Zervas, "Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

Norreys, P.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Okhotnikov, O. G.

Paulsen, H. N.

Peng, Y.

Potma, E. O.

Pukhov, A.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Ramond, T. M.

Reimann, K.

Ross, I. N.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Rousseau, J. P.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

Rousseau, P.

Rusu, M.

Salin, F.

Schoenlein, R. W.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Shank, C. V.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Stolow, A.

A. Stolow and D. M. Jonas, "Multidimensional snapshots of chemical dynamics," Science 305, 1575-1577 (2004).
[CrossRef] [PubMed]

Takada, H.

Taylor, A.

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Thøgersen, J.

Torizuka, K.

Towrie, M.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Volfbeyn, P.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Wang, S. C.

Weiner, A. M.

Woerner, M.

Wu, K.

Wurm, M.

Xie, X. S.

Xu, S.

Xu, Z.

Ye, J.

Yoshitomi, D.

Zeng, H.

Zervas, M. N.

V. J. Matsas, T. P. Newson, and M. N. Zervas, "Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

Zewail, A. H.

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 18409- 18414 (2007).
[CrossRef] [PubMed]

Zhai, H.

Zhu, C. J.

Zolotorev, M.

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

Appl. Phys. B (1)

R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, and A. Stabini, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B. 79, 693-700 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (2)

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser plasma accelerator producing monoenergetic electron beams," Nature (London) 431, 541-544 (2004).
[CrossRef]

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature (London) 412, 798-802 (2001).
[CrossRef]

Opt. Commun. (2)

V. J. Matsas, T. P. Newson, and M. N. Zervas, "Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching," Opt. Commun. 92, 61-66 (1992).
[CrossRef]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scatteringmicroscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
[CrossRef] [PubMed]

C. J. Zhu, J. F. He, and S. C. Wang, "Generation of synchronized femtosecond and picosecond pulses in a dualwavelength femtosecond Ti:sapphire laser," Opt. Lett. 30, 561-563 (2005).
[CrossRef] [PubMed]

M. Rusu, R. Herda, and O. G. Okhotnikov, "Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity," Opt. Lett. 29, 2246-2248 (2004).
[CrossRef] [PubMed]

E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168-1170 (2002).
[CrossRef]

A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, "Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator," Opt. Lett. 28, 663-665 (2003).
[CrossRef] [PubMed]

D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, and K. Torizuka, "Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train," Opt. Lett. 31, 3243-3245 (2006).
[CrossRef] [PubMed]

D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, "100-attosecond timing jitter between two-color mode-locked lasers by active-passive hybrid synchronization," Opt. Lett. 30, 1408-1410 (2005).
[CrossRef] [PubMed]

G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414-416 (1996).
[CrossRef] [PubMed]

PNAS (1)

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 18409- 18414 (2007).
[CrossRef] [PubMed]

Science (3)

A. Stolow and D. M. Jonas, "Multidimensional snapshots of chemical dynamics," Science 305, 1575-1577 (2004).
[CrossRef] [PubMed]

R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C. V. Shank, "Femtosecond x-ray pulses at 0.4 ÅA generated by 90º Thomson scattering: a tool for probing the structural dynamics of materials," Science 274, 236-238 (1996).
[CrossRef]

A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, P. Norreys, T. Broome, D. Findlay, and R. Nelmes, "A route to the brightest possible neutron source?," Science 315, 1092-1095 (2007).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)


               Fig. 1.
Fig. 1.

Schematic setup of the experiment. YDF: Yb-doped fiber; YDFA: Yb-doped fiber amplifier; EDF: Er-doped fiber; Col: collimator; ISO1 & ISO2: isolators; WDM: wavelength-division multiplexing; PBS: polarization beam splitter; PC1~3: polarization controllers.

Fig. 2.
Fig. 2.

Free-running square mode-locking waveform of the slave Er-laser (a) and its corresponding spectrum (b); Synchronized mode-locking waveform of the slave Er-laser (c) and its corresponding spectrum (d).

Fig. 3.
Fig. 3.

(a) Synchronized pulse trace of the slave Er-doped fiber laser. (b) Output power (squares) and the peak power (dots) of the slave laser as a function of the pump power.

Fig. 4.
Fig. 4.

(a) RF spectrum of the free-running repetition rate (up); synchronous repetition rate (down); (b) Cavity mismatch for the master and slave fiber laser: fr is the varying frequency with mismatch and f 0 the frequency at zero mismatch; (c) The repetition rate discrepancy within 30 minutes; (d) Optical cross correlation measurement of the timing jitter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = cos 2 Ω 1 2 [ 1 cos ( 2 π L L b ) ] sin 2 θ sin [ 2 ( θ Ω ) ] ,
L b L b 0 = ( 3 8 + 5 8 1 + P 2 ) 1 2 ,
P max = 1 25 [ 2 ( 2 + L b 0 L ) 2 3 ] 2 1 .
Δ ϕ XPM = 4 π n 2 E p 2 L eff 3 λ ,

Metrics