Abstract

A common problem when profiling surfaces with steps or discontinuities using white-light (coherence-probe) interferometry is localized spikes (batwings) or spurious peaks due to diffraction effects. We show that errors due to these effects can be minimized by processing the irradiance data obtained with an achromatic phase-shifter operating on the geometric (Pancharatnam) phase to yield the values of the surface height.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. C. Chim and G. S. Kino, "Correlation microscope," Opt. Lett. 15, 579-581 (1990).
    [CrossRef] [PubMed]
  2. B. S. Lee and T. C. Strand, "Profilometry with a coherence scanning microscope," Appl. Opt. 29, 3784-3788 (1990).
    [CrossRef] [PubMed]
  3. T. Dresel, G. Hausler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992).
    [CrossRef]
  4. K. G. Larkin, "Effective nonlinear algorithm for envelope detection in white light interferometry," J. Opt. Soc. Am. A 13, 832-843 (1996).
    [CrossRef]
  5. P. Sandoz, "An algorithm for profilometry by white-light phase-shifting interferometry," J. Mod. Opt. 43, 1545-1554 (1996).
  6. P. Sandoz, R. Devillers, and A. Plata, "Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry," J. Mod. Opt. 44, 519-534 (1997).
    [CrossRef]
  7. J. Schmit and K. Creath, "Window function influence on phase error in phase-shifting algorithms," Appl. Opt. 35, 5642-5649 (1996).
    [CrossRef] [PubMed]
  8. A. Harasaki and J. C. Wyant, "Fringe modulation skewing effects in white-light vertical scanning interferometry," Appl. Opt. 39, 2101-2106 (2000).
    [CrossRef]
  9. A. Tavrov, J. Schmit, N. Kerwien, W. Osten, and H. Tiziani, "Diffraction-induced coherence levels," Appl. Opt. 44, 2202-2212 (2005).
    [CrossRef] [PubMed]
  10. P. de Groot and X. C. de Lega, "Signal modeling for low-coherence height scanning interference microscopy," Appl. Opt. 43, 4821-4830 (2004).
    [CrossRef] [PubMed]
  11. P. Hariharan and M. Roy, "White-light phase-stepping interferometry for surface profiling," J. Mod. Opt. 41, 2197-2201 (1994).
    [CrossRef]
  12. P. Hariharan and M. Roy, "White-light phase-stepping interferometry: measurement of the fractional interference order," J. Mod. Opt. 42, 2357-2360 (1995).
    [CrossRef]
  13. M. Roy, C. J. R. Sheppard, and P. Hariharan, "Low-coherence interference microscopy using a ferro-electric liquid crystal phase modulator," Opt. Express 12, 2512-2516 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2512.
    [CrossRef] [PubMed]
  14. P. Hariharan, P. E. Ciddor, and M. Roy, "Improved switchable achromatic phase shifters, Part 2," Opt. Eng.  44, 105603/1-105603/4 (2005).
    [CrossRef]
  15. M. Roy, G. Cox, and P. Hariharan, "Low-coherence interference microscopy with an improved switchable achromatic phase-shifter," Opt. Express 13, 9125-9130 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9125.
    [CrossRef] [PubMed]

2005

2004

2000

1997

P. Sandoz, R. Devillers, and A. Plata, "Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry," J. Mod. Opt. 44, 519-534 (1997).
[CrossRef]

1996

1995

P. Hariharan and M. Roy, "White-light phase-stepping interferometry: measurement of the fractional interference order," J. Mod. Opt. 42, 2357-2360 (1995).
[CrossRef]

1994

P. Hariharan and M. Roy, "White-light phase-stepping interferometry for surface profiling," J. Mod. Opt. 41, 2197-2201 (1994).
[CrossRef]

1992

1990

Chim, S. S. C.

Cox, G.

Creath, K.

de Groot, P.

de Lega, X. C.

Devillers, R.

P. Sandoz, R. Devillers, and A. Plata, "Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry," J. Mod. Opt. 44, 519-534 (1997).
[CrossRef]

Dresel, T.

Harasaki, A.

Hariharan, P.

Hausler, G.

Kerwien, N.

Kino, G. S.

Larkin, K. G.

Lee, B. S.

Osten, W.

Plata, A.

P. Sandoz, R. Devillers, and A. Plata, "Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry," J. Mod. Opt. 44, 519-534 (1997).
[CrossRef]

Roy, M.

Sandoz, P.

P. Sandoz, R. Devillers, and A. Plata, "Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry," J. Mod. Opt. 44, 519-534 (1997).
[CrossRef]

P. Sandoz, "An algorithm for profilometry by white-light phase-shifting interferometry," J. Mod. Opt. 43, 1545-1554 (1996).

Schmit, J.

Sheppard, C. J. R.

Strand, T. C.

Tavrov, A.

Tiziani, H.

Venzke, H.

Wyant, J. C.

Appl. Opt.

J. Mod. Opt.

P. Sandoz, "An algorithm for profilometry by white-light phase-shifting interferometry," J. Mod. Opt. 43, 1545-1554 (1996).

P. Sandoz, R. Devillers, and A. Plata, "Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry," J. Mod. Opt. 44, 519-534 (1997).
[CrossRef]

P. Hariharan and M. Roy, "White-light phase-stepping interferometry for surface profiling," J. Mod. Opt. 41, 2197-2201 (1994).
[CrossRef]

P. Hariharan and M. Roy, "White-light phase-stepping interferometry: measurement of the fractional interference order," J. Mod. Opt. 42, 2357-2360 (1995).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

P. Hariharan, P. E. Ciddor, and M. Roy, "Improved switchable achromatic phase shifters, Part 2," Opt. Eng.  44, 105603/1-105603/4 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the optical system of the modified Linnik interference microscope using a pair of switchable achromatic phase-shifters.

Fig. 2.
Fig. 2.

3-D plot of a section of the surface of the test sample produced using the visibility data obtained with the modified Linnik interference microscope and the geometric phase shifter.

Fig. 3.
Fig. 3.

Profile of the surface of the same test sample produced with a system using a conventional method of coherence sensing.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = I 1 + I 2 + 2 ( I 1 I 2 ) 1 / 2 g ( p ) cos [ ( 2 π / λ ̄ ) p + ϕ 0 ] ,
V = [ ( I 90 I 90 ) 2 + 2 ( I 0 I 90 I 90 ) 2 ] I 90 + I 90 .

Metrics