Abstract

We present the theory of total optical transmission through a small hole in metal waveguide screen. Unlike past works on extraordinary optical transmission using arrays, there is only a single hole; yet, the theory predicts total transmission for a perfect electric conductor (not normalized to the hole size) 100% transmission, regardless of how small the hole. This is very surprising considering the usual application of Bethe’s theory to waveguide apertures. Comprehensive numerical simulations agree well with the theory and their modal-analysis supports the proposed evanescent-mode mechanism for total transmission. These simulations are extended to show the influence of realistic material response (including loss) at microwave and visible-infrared frequencies. Due to the strong resonant field localization and transmission from only a thin metal screen with a single hole, many promising applications arise for this phenomenon including filtering, sensing, plasma generation, nonlinear optics, spectroscopy, heating, optical trapping, near-field microscopy and cavity quantum electrodynamics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
    [CrossRef]
  3. C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39 - 46 (2007).
    [CrossRef] [PubMed]
  4. F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).
  5. R. Gordon, "Bethe’s Aperture Theory for Arrays," Phys. Rev. A 76, 053,806 (2007).
  6. D. M. Pozar, Microwave Engineering (John Wiley and Sons Inc, Amherst, 2004).
  7. A. Y. Shulman, "Edge Condition in Diffraction Theory and Maximum Enhancement of Electromagnetic Field in the Near Zone," Phys. Status Solidi A 175, 279 - 287 (1999).
    [CrossRef]
  8. H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005).
    [CrossRef]
  9. F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).
  10. R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37 (1967).
    [CrossRef]
  11. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc, New York, 1999).
  12. N. Marcuvitz, Waveguide Handbook (Peter Peregrinus Ltd., London, UK, 1984).
  13. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
    [CrossRef]
  14. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  15. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
    [CrossRef]
  16. F. J. G. de Abajo, "Colloquium: Light Scattering by Particle and Hole Arrays," Rev. Mod. Phys. 79, 1267 - 1290 (2007).
    [CrossRef]
  17. I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006).
    [CrossRef]
  18. M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
    [CrossRef]
  19. J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, C. Lienau, and Q. H. Park, "Invisible plasmonic meta-materials through impedance matching to vacuum," Opt. Express 13, 681-687 (2005).
  20. C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35 - 100 (1954).
    [CrossRef]
  21. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced Terahertz Electric Near-Field Measurements at Sub-Wavelangth Diameter Metallic Apertures," Opt. Express 16, 7407 - 7417 (2008).
    [CrossRef] [PubMed]
  22. J. W. Lee, M. A. Seo, D. J. Park, and D. S. Kim, "Shape Resonance Omni-Directional Terahertz Filters with Near-Unity Transmittance," Opt. Express 14, 1253 - 1259 (2006).
    [CrossRef] [PubMed]
  23. E. X. Jin and X. Xu, "Plasmonic Effects in Near-Field Optical Transmission Enhancement through a Single Bowtie-Shaped Aperture," Appl. Phys. B 84, 3 - 9 (2006).
    [CrossRef]
  24. D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
    [CrossRef]
  25. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
    [CrossRef]
  26. A. P. Hibbins and J. R. Sambles, "Squeezing Millimeter Waves into Microns," Phys. Rev. Lett. 92, 143,904 (2004).
    [CrossRef]
  27. M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using epsilon-Near-Zero Materials," Phys. Rev. Lett. 97, 157,403 (2006).
    [CrossRef]
  28. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
    [CrossRef]

2008

F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced Terahertz Electric Near-Field Measurements at Sub-Wavelangth Diameter Metallic Apertures," Opt. Express 16, 7407 - 7417 (2008).
[CrossRef] [PubMed]

2007

F. J. G. de Abajo, "Colloquium: Light Scattering by Particle and Hole Arrays," Rev. Mod. Phys. 79, 1267 - 1290 (2007).
[CrossRef]

R. Gordon, "Bethe’s Aperture Theory for Arrays," Phys. Rev. A 76, 053,806 (2007).

C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39 - 46 (2007).
[CrossRef] [PubMed]

2006

I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, D. J. Park, and D. S. Kim, "Shape Resonance Omni-Directional Terahertz Filters with Near-Unity Transmittance," Opt. Express 14, 1253 - 1259 (2006).
[CrossRef] [PubMed]

M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using epsilon-Near-Zero Materials," Phys. Rev. Lett. 97, 157,403 (2006).
[CrossRef]

E. X. Jin and X. Xu, "Plasmonic Effects in Near-Field Optical Transmission Enhancement through a Single Bowtie-Shaped Aperture," Appl. Phys. B 84, 3 - 9 (2006).
[CrossRef]

2005

J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, C. Lienau, and Q. H. Park, "Invisible plasmonic meta-materials through impedance matching to vacuum," Opt. Express 13, 681-687 (2005).

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
[CrossRef]

F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).

2004

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

A. P. Hibbins and J. R. Sambles, "Squeezing Millimeter Waves into Microns," Phys. Rev. Lett. 92, 143,904 (2004).
[CrossRef]

1999

A. Y. Shulman, "Edge Condition in Diffraction Theory and Maximum Enhancement of Electromagnetic Field in the Near Zone," Phys. Status Solidi A 175, 279 - 287 (1999).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

1998

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

1996

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

1967

R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37 (1967).
[CrossRef]

1954

C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35 - 100 (1954).
[CrossRef]

1944

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Adam, A. J. L.

Ahn, K. J.

Ahn, Y. H.

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Bethe, H. A.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Blair, S.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Bonod, N.

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35 - 100 (1954).
[CrossRef]

Brok, J. M.

Brune, M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Catrysse, P. B.

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005).
[CrossRef]

Crespo-Valero, P.

I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006).
[CrossRef]

Davidov, D.

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

de Abajo, F. J. G.

F. J. G. de Abajo, "Colloquium: Light Scattering by Particle and Hole Arrays," Rev. Mod. Phys. 79, 1267 - 1290 (2007).
[CrossRef]

F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39 - 46 (2007).
[CrossRef] [PubMed]

Ebbesen, T.W.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Engheta, N.

M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using epsilon-Near-Zero Materials," Phys. Rev. Lett. 97, 157,403 (2006).
[CrossRef]

Fan, S.

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39 - 46 (2007).
[CrossRef] [PubMed]

Gerard, D.

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

Ghaemi, H. F.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Golosovsky, M.

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

Gomez-Medina, R.

F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).

Gordon, R.

R. Gordon, "Bethe’s Aperture Theory for Arrays," Phys. Rev. A 76, 053,806 (2007).

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

Haroche, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Herron, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins and J. R. Sambles, "Squeezing Millimeter Waves into Microns," Phys. Rev. Lett. 92, 143,904 (2004).
[CrossRef]

Jeoung, S. C.

Jin, E. X.

E. X. Jin and X. Xu, "Plasmonic Effects in Near-Field Optical Transmission Enhancement through a Single Bowtie-Shaped Aperture," Appl. Phys. B 84, 3 - 9 (2006).
[CrossRef]

Kang, J. H.

Kim, D. S.

Kumar, L. K. S.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

Lee, J. W.

Lezec, H. J.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Lienau, C.

Liu, Y.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Marques, R.

F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Medina, F.

F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).

Mesa, F.

F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).

Moreno, E.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
[CrossRef]

Mosig, J. R.

I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006).
[CrossRef]

Nagel, M.

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Park, D. J.

Park, Q. H.

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Planken, P. C. M.

Popov, E.

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
[CrossRef]

Raimond, J. M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Rigneault, H.

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

Saenz, J. J. R.

F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).

Sambles, J. R.

A. P. Hibbins and J. R. Sambles, "Squeezing Millimeter Waves into Microns," Phys. Rev. Lett. 92, 143,904 (2004).
[CrossRef]

Seo, M. A.

Shin, H.

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005).
[CrossRef]

Shulman, A. Y.

A. Y. Shulman, "Edge Condition in Diffraction Theory and Maximum Enhancement of Electromagnetic Field in the Near Zone," Phys. Status Solidi A 175, 279 - 287 (1999).
[CrossRef]

Silveirinha, M.

M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using epsilon-Near-Zero Materials," Phys. Rev. Lett. 97, 157,403 (2006).
[CrossRef]

Sohn, J. Y.

Stevanovic, I.

I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006).
[CrossRef]

Thio, T.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Ulrich, R.

R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37 (1967).
[CrossRef]

Wenger, J.

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Wolff, P. A.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, "Plasmonic Effects in Near-Field Optical Transmission Enhancement through a Single Bowtie-Shaped Aperture," Appl. Phys. B 84, 3 - 9 (2006).
[CrossRef]

Appl. Phys. B

E. X. Jin and X. Xu, "Plasmonic Effects in Near-Field Optical Transmission Enhancement through a Single Bowtie-Shaped Aperture," Appl. Phys. B 84, 3 - 9 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech

F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).

IEEE Trans. Mocrowave Theory Tech.

I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006).
[CrossRef]

Infrared Phys.

R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37 (1967).
[CrossRef]

Nanotechnology

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004).
[CrossRef]

Nature

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39 - 46 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. A

R. Gordon, "Bethe’s Aperture Theory for Arrays," Phys. Rev. A 76, 053,806 (2007).

Phys. Rev. B

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006).
[CrossRef]

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008).
[CrossRef]

Phys. Rev. E

F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).

Phys. Rev. Lett.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005).
[CrossRef]

A. P. Hibbins and J. R. Sambles, "Squeezing Millimeter Waves into Microns," Phys. Rev. Lett. 92, 143,904 (2004).
[CrossRef]

M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using epsilon-Near-Zero Materials," Phys. Rev. Lett. 97, 157,403 (2006).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999).
[CrossRef]

Phys. Status Solidi A

A. Y. Shulman, "Edge Condition in Diffraction Theory and Maximum Enhancement of Electromagnetic Field in the Near Zone," Phys. Status Solidi A 175, 279 - 287 (1999).
[CrossRef]

Rep. Prog. Phys.

C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35 - 100 (1954).
[CrossRef]

Rev. Mod. Phys.

F. J. G. de Abajo, "Colloquium: Light Scattering by Particle and Hole Arrays," Rev. Mod. Phys. 79, 1267 - 1290 (2007).
[CrossRef]

Science

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other

D. M. Pozar, Microwave Engineering (John Wiley and Sons Inc, Amherst, 2004).

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc, New York, 1999).

N. Marcuvitz, Waveguide Handbook (Peter Peregrinus Ltd., London, UK, 1984).

Supplementary Material (3)

» Media 1: MOV (662 KB)     
» Media 2: MOV (530 KB)     
» Media 3: MPG (913 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Schematic of square waveguide with a metal screen and a square aperture at the center of the screen. (b) Theoretical transmission spectrum of the TE10 mode through a perfect-electric conductor (PEC) screen with a square aperture at the center in a 10 cm wide square waveguide. Three results are shown in this graph with aperture width 1 cm, 1.5 cm and 2 cm, in blue, red and black. (c) Comprehensive numerical simulation showing transmission of the TE10 mode through equivalent structures as in (b), except for 1 mm metal screen-width. Simulations were done using a PEC metal (lines) and lossy aluminum (circles) as the material of the waveguide and the screen.

Fig. 2.
Fig. 2.

Comprehensive numerical simulation showing the z-component of the electric field at z = 30 cm for the resonant frequency and the y-component of the electric field in the hole. The side of the aperture is 2 cm. The profile at 30 cm matches the TM12 mode. The color-scale of this field has red as its the maximum (blue as the equal magnitude negative minimum) and the absolute maximum field strength is 6.2 times the incident field maximum. The y-component of the electric field at the screen has a color-scale where red is the maximum field strength with a 16-fold enhancement compared with the incident field maximum. We provide additional animations showing the y-component of the electric field in the yz-plane for steady-state on-resonance (Media 1), steady-state off-resonance (Media 2) and time-domain (Media 3).

Tables (1)

Tables Icon

Table 1. Transmission peak frequencies (GHz)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E y ( x , y , z = 0 ) = 1 + m , n r mn sin mπx a cos nπy a ,
E y ( x , y , z = 0 + ) = 1 + m , n t mn sin mπx a cos nπy a ,
t mn 2 t 10 ,
t m0 t 10 ,
H x ( a 2 , a 2 , 0 + ) t 10 Z 0 + 5 2 i 2 t 10 Z 0 f c 12 2 f 2 1 ,
T = t 10 2 = 1 1 + ( c a 2 4 πf α m 5 f c 12 2 f 2 1 ) 2

Metrics