Abstract

Theoretical analysis is presented for a pitch-variable blazed grating which consists of freestanding silicon beams. The pitch-variable blazed grating is implemented by combining silicon-on-insulator (SOI) technology with microelectronicmechanical system (MEMS) technology. The whole device is fabricated on a 10μm silicon device layer to guarantee sufficient stiffness. The 4-level blazed surface profile is realized by combining a two-mask process with fast atom beam etching. Electrostatic combdrive microactuators with double folded springs are proposed to stretch the freestanding grating beams. In association with reactive ion etching and vapor HF release, the freestanding grating beams and the microactuators are obtained, and a Cr/Au film is deposited onto the blazed grating surfaces by a protective mask process to improve the diffracted power. Mechanical response and diffraction efficiency of fabricated devices are characterized, and the experimental results indicate that the fabricated 4-level blazed gratings extend both the tuning range and the diffraction efficiency of the 1st diffraction order of present MEMS diffraction gratings.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
    [CrossRef]
  2. A.Q. Liu and X.M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1 (2007).
    [CrossRef]
  3. C. Antoine, X. Li, J. Wang, and O. Solgaard, "Reconfigurable Optical Wavelength Multiplexer Using a MEMS Tunable Blazed Grating," J. Lightwave Technol. 25, 3100 (2007).
    [CrossRef]
  4. J. Hsieh, S. Hsiao, H. Yin, W. Chen, C. Weng, Y. Lin, W. Fang, and K. Shieh, "An in-plane dispersive system utilizing micro tunable vertical grating," 2005 IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, pp.97-98.
  5. W. Shih, S. Kim, and G. Barbastathis, "High-resolution electrostatic analog tunable grating with a single-mask fabrication process," J. Microelectromech. Syst. 15, 763 (2006).
    [CrossRef]
  6. A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
    [CrossRef]
  7. D. Yan and A. Lal, "Design and characterization of slit variable microgratings," IEEE J. Sensors. 6, 458 (2006).
    [CrossRef]
  8. X. M. Zhang, Q. W. Zhao, T. Zhong, A. B. Yu, E. H. Khoo, C. Lu, and A. Q. Liu, "Variable nano-grating for tunable filters," 2007 Solid-state sensors, actuators and Microsystems conference, pp. 2417-2420.
  9. M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
    [CrossRef]
  10. X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
    [CrossRef]
  11. Y.-S. Yang and C.-H. Liu, "Design and fabrication of pitch tunable blaze grating," Proceeding of SPIE Photonics West 2005, Volume 5717 MEMS/MOEMS Components and Their Applications II -13.
  12. Y.-C. Tung and K. Kurabayashi, "Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning," Appl. Phys. Lett. 86, 161113 (2005).
    [CrossRef]
  13. H. Tamada, "Blazed GxLPTM light modulators for laser projectors," J. Soc. Inf. Display 15, 817 (2007).
    [CrossRef]
  14. M. W. Kowarz, J. C. Brazas, Jr., and J. G. Phalen, "Conformal grating electromechanical system (GEMS) for high-speeddigital light modulation," 2002 The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp.568-573.
  15. S. K Yun, "Spatial optical modulator (SOM): Samsung's light modulator for next-generation laser displays," J. Soc. Inf. Display 15, 321 (2007).
    [CrossRef]
  16. T. Shiono, T. Hamamoto, and K. Takahara, "High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron beam lithography," Appl. Opt. 41, 2390 (2002).
    [CrossRef] [PubMed]
  17. M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
    [CrossRef] [PubMed]
  18. T. W. Ang, G. T. Reed, and A. Vonsovici, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000).
    [CrossRef]
  19. C. Lee, K. Hane, and S. Lee, "The optimization of sawtooth gratings using RCWA and its fabrication on a slanted silicon substrate by fast atom beam etching," J. Micromech. Microeng. 18, 45014 (2008).
    [CrossRef]
  20. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrhigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J.Vac.Sci.Technology. B 25, 2593 (2007).
    [CrossRef]
  21. C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
    [CrossRef]
  22. Y. Wang, Y. Kanamori, T. Sasaki, and K. Hane, "Design and fabrication of freestanding pitch-variable blazed gratings on silicon-on-insulator wafer," accepted by J. Micromech. Microeng.
  23. S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH 1999).
  24. Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
    [CrossRef]

2008 (1)

C. Lee, K. Hane, and S. Lee, "The optimization of sawtooth gratings using RCWA and its fabrication on a slanted silicon substrate by fast atom beam etching," J. Micromech. Microeng. 18, 45014 (2008).
[CrossRef]

2007 (5)

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrhigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J.Vac.Sci.Technology. B 25, 2593 (2007).
[CrossRef]

A.Q. Liu and X.M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1 (2007).
[CrossRef]

H. Tamada, "Blazed GxLPTM light modulators for laser projectors," J. Soc. Inf. Display 15, 817 (2007).
[CrossRef]

S. K Yun, "Spatial optical modulator (SOM): Samsung's light modulator for next-generation laser displays," J. Soc. Inf. Display 15, 321 (2007).
[CrossRef]

C. Antoine, X. Li, J. Wang, and O. Solgaard, "Reconfigurable Optical Wavelength Multiplexer Using a MEMS Tunable Blazed Grating," J. Lightwave Technol. 25, 3100 (2007).
[CrossRef]

2006 (4)

D. Yan and A. Lal, "Design and characterization of slit variable microgratings," IEEE J. Sensors. 6, 458 (2006).
[CrossRef]

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

W. Shih, S. Kim, and G. Barbastathis, "High-resolution electrostatic analog tunable grating with a single-mask fabrication process," J. Microelectromech. Syst. 15, 763 (2006).
[CrossRef]

2005 (1)

Y.-C. Tung and K. Kurabayashi, "Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning," Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

2004 (2)

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

2003 (1)

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

2002 (1)

2001 (1)

Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
[CrossRef]

2000 (2)

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

T. W. Ang, G. T. Reed, and A. Vonsovici, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000).
[CrossRef]

Ahn, M.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrhigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J.Vac.Sci.Technology. B 25, 2593 (2007).
[CrossRef]

Ang, T. W.

T. W. Ang, G. T. Reed, and A. Vonsovici, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000).
[CrossRef]

Antoine, C.

C. Antoine, X. Li, J. Wang, and O. Solgaard, "Reconfigurable Optical Wavelength Multiplexer Using a MEMS Tunable Blazed Grating," J. Lightwave Technol. 25, 3100 (2007).
[CrossRef]

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

Asundi, A.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Bailey, T. C.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Barbastathis, G.

W. Shih, S. Kim, and G. Barbastathis, "High-resolution electrostatic analog tunable grating with a single-mask fabrication process," J. Microelectromech. Syst. 15, 763 (2006).
[CrossRef]

Belikov, R.

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Carter, J.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Chang, C.-h.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Chollet, F.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Ekerdt, J. G.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Fleming, R. C.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Frankel, R. D.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Fujita, H.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Hamamoto, T.

Hane, K.

C. Lee, K. Hane, and S. Lee, "The optimization of sawtooth gratings using RCWA and its fabrication on a slanted silicon substrate by fast atom beam etching," J. Micromech. Microeng. 18, 45014 (2008).
[CrossRef]

Heilmann, R. K.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrhigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J.Vac.Sci.Technology. B 25, 2593 (2007).
[CrossRef]

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Hirai, Y.

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

Hoogerwerf, A.

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

Jaroszewicz, Z.

Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
[CrossRef]

Johansen, I.-R.

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Kikuta, H.

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

Kim, S.

W. Shih, S. Kim, and G. Barbastathis, "High-resolution electrostatic analog tunable grating with a single-mask fabrication process," J. Microelectromech. Syst. 15, 763 (2006).
[CrossRef]

Kolodziejczyk, A.

Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
[CrossRef]

Kowalik, A.

Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
[CrossRef]

Kurabayashi, K.

Y.-C. Tung and K. Kurabayashi, "Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning," Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

Lacolle, M.

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Lal, A.

D. Yan and A. Lal, "Design and characterization of slit variable microgratings," IEEE J. Sensors. 6, 458 (2006).
[CrossRef]

Lee, C.

C. Lee, K. Hane, and S. Lee, "The optimization of sawtooth gratings using RCWA and its fabrication on a slanted silicon substrate by fast atom beam etching," J. Micromech. Microeng. 18, 45014 (2008).
[CrossRef]

Lee, D.

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

Lee, S.

C. Lee, K. Hane, and S. Lee, "The optimization of sawtooth gratings using RCWA and its fabrication on a slanted silicon substrate by fast atom beam etching," J. Micromech. Microeng. 18, 45014 (2008).
[CrossRef]

Li, X.

C. Antoine, X. Li, J. Wang, and O. Solgaard, "Reconfigurable Optical Wavelength Multiplexer Using a MEMS Tunable Blazed Grating," J. Lightwave Technol. 25, 3100 (2007).
[CrossRef]

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

Liu, A. Q.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Liu, A.Q.

A.Q. Liu and X.M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1 (2007).
[CrossRef]

Løvhaugen, O.

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Murphy, E.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Niedermann, Ph.

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

Okano, M.

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

Peter, Y.-A.

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

Reed, G. T.

T. W. Ang, G. T. Reed, and A. Vonsovici, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000).
[CrossRef]

Restrepo, R.

Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
[CrossRef]

Sagberg, H.

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Schattenburg, M. L.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrhigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J.Vac.Sci.Technology. B 25, 2593 (2007).
[CrossRef]

Shih, W.

W. Shih, S. Kim, and G. Barbastathis, "High-resolution electrostatic analog tunable grating with a single-mask fabrication process," J. Microelectromech. Syst. 15, 763 (2006).
[CrossRef]

Shiono, T.

Solgaard, O.

C. Antoine, X. Li, J. Wang, and O. Solgaard, "Reconfigurable Optical Wavelength Multiplexer Using a MEMS Tunable Blazed Grating," J. Lightwave Technol. 25, 3100 (2007).
[CrossRef]

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Stanley, R.

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

Sudbø, A.

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

Takahara, K.

Tamada, H.

H. Tamada, "Blazed GxLPTM light modulators for laser projectors," J. Soc. Inf. Display 15, 817 (2007).
[CrossRef]

Tormen, M.

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

Tung, Y.-C.

Y.-C. Tung and K. Kurabayashi, "Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning," Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

Voisin, R.

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

Vonsovici, A.

T. W. Ang, G. T. Reed, and A. Vonsovici, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000).
[CrossRef]

Wang, J.

Wang, J.-S.

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

Yamamoto, K.

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

Yan, D.

D. Yan and A. Lal, "Design and characterization of slit variable microgratings," IEEE J. Sensors. 6, 458 (2006).
[CrossRef]

Yotsuya, T.

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

Yun, S. K

S. K Yun, "Spatial optical modulator (SOM): Samsung's light modulator for next-generation laser displays," J. Soc. Inf. Display 15, 321 (2007).
[CrossRef]

Zhang, X.M.

A.Q. Liu and X.M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1 (2007).
[CrossRef]

Zhao, B.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Zou, Q.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y.-C. Tung and K. Kurabayashi, "Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning," Appl. Phys. Lett. 86, 161113 (2005).
[CrossRef]

T. W. Ang, G. T. Reed, and A. Vonsovici, "Highly efficient unibond silicon-on-insulator blazed grating couplers," Appl. Phys. Lett. 77, 4214 (2000).
[CrossRef]

Appl.Opt. (1)

M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron beam lithography," Appl.Opt. 43, 5137 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Topics Quantum Electron. (1)

H. Sagberg, M. Lacolle, I.-R. Johansen, O. Løvhaugen, R. Belikov, O. Solgaard, and A. Sudbø, "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE J. Sel. Topics Quantum Electron. 10, 604 (2004).
[CrossRef]

IEEE J. Sensors. (1)

D. Yan and A. Lal, "Design and characterization of slit variable microgratings," IEEE J. Sensors. 6, 458 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

W. Shih, S. Kim, and G. Barbastathis, "High-resolution electrostatic analog tunable grating with a single-mask fabrication process," J. Microelectromech. Syst. 15, 763 (2006).
[CrossRef]

X. Li, C. Antoine, D. Lee, J.-S. Wang, and O. Solgaard, "Tunable blazed gratings," J. Microelectromech. Syst. 15, 597 (2006).
[CrossRef]

J. Micromech. Microeng. (2)

C. Lee, K. Hane, and S. Lee, "The optimization of sawtooth gratings using RCWA and its fabrication on a slanted silicon substrate by fast atom beam etching," J. Micromech. Microeng. 18, 45014 (2008).
[CrossRef]

A.Q. Liu and X.M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1 (2007).
[CrossRef]

J. Opt. A: Pure and Appl. Opt. (1)

M. Tormen, Y.-A. Peter, Ph. Niedermann, A. Hoogerwerf, and R. Stanley, "Deformable MEMS grating for wide tunability and high operating speed," J. Opt. A: Pure and Appl. Opt. 8, 337 (2006).
[CrossRef]

J. Soc. Inf. Display (2)

S. K Yun, "Spatial optical modulator (SOM): Samsung's light modulator for next-generation laser displays," J. Soc. Inf. Display 15, 321 (2007).
[CrossRef]

H. Tamada, "Blazed GxLPTM light modulators for laser projectors," J. Soc. Inf. Display 15, 817 (2007).
[CrossRef]

J.Vac.Sci.Technol.B (1)

C.-h. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, "Fabrication of sawtooth diffraction gratings using nanoimprint lithography," J.Vac.Sci.Technol.B 21, 2755 (2003).
[CrossRef]

J.Vac.Sci.Technology. B (1)

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrhigh aspect ratio freestanding gratings on silicon-on-insulator wafers," J.Vac.Sci.Technology. B 25, 2593 (2007).
[CrossRef]

Opt. Eng. (1)

Z. Jaroszewicz, A. Kolodziejczyk, A. Kowalik, and R. Restrepo, "Determination of phase-step errors of kinoform gratings from their diffraction efficiences," Opt. Eng. 40, 692 (2001).
[CrossRef]

Sens. Act. A (1)

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, "Micro-opto-mechanical grating switches," Sens. Act. A 86, 127 (2000).
[CrossRef]

Other (6)

X. M. Zhang, Q. W. Zhao, T. Zhong, A. B. Yu, E. H. Khoo, C. Lu, and A. Q. Liu, "Variable nano-grating for tunable filters," 2007 Solid-state sensors, actuators and Microsystems conference, pp. 2417-2420.

J. Hsieh, S. Hsiao, H. Yin, W. Chen, C. Weng, Y. Lin, W. Fang, and K. Shieh, "An in-plane dispersive system utilizing micro tunable vertical grating," 2005 IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, pp.97-98.

Y.-S. Yang and C.-H. Liu, "Design and fabrication of pitch tunable blaze grating," Proceeding of SPIE Photonics West 2005, Volume 5717 MEMS/MOEMS Components and Their Applications II -13.

Y. Wang, Y. Kanamori, T. Sasaki, and K. Hane, "Design and fabrication of freestanding pitch-variable blazed gratings on silicon-on-insulator wafer," accepted by J. Micromech. Microeng.

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH 1999).

M. W. Kowarz, J. C. Brazas, Jr., and J. G. Phalen, "Conformal grating electromechanical system (GEMS) for high-speeddigital light modulation," 2002 The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp.568-573.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a)&(b) Schematic diagram of a pitch-variable blazed grating; (a) continuous blazed profile; (b) 4-level blazed profile; (c) the 1st order diffraction efficiency as a function of the grating duty ratio; (d) the 1st order diffraction efficiency of variable grating period calculated by RCWA.

Fig. 2.
Fig. 2.

SEM images of tunable freestanding 4-level blazed gratings. (a) the freestanding device; (b) the magnified view of 20μm period grating; (c) the magnified view of 15μm period grating; (d) the cross-sectional view of 4-level blazed gratings.

Fig. 3.
Fig. 3.

(a) Optical images of the grating beam at the initial state; (b) with 100V applied; (c) Measured and simulated displacement versus applied voltage.

Fig. 4.
Fig. 4.

(a) Diffraction pattern versus wavelength obtained from infrared camera; (b) Measured and simulated diffraction efficiency of 20μm period grating.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R ( x ) = { A exp ( 2 πiy λ ) a 2 x nP a 2 0 x nP < a 2 , a 2 < x nP ( n = 0 , ± 1 , ± 2 , ± 3 )
y = h a x
I ( k ) = C 0 P P 2 P 2 R ( x ) exp ( 2 πikx P ) dx
I ( k ) = C 0 A P a 2 a 2 exp { 2 πi ( 2 h k P ) x } dx
= C 0 A sin { 2 π ( 2 h k P ) a 2 } πP ( 2 h k P )
I ( k = 1 ) = C 0 A a p sin { π ( 1 a P ) } π ( 1 a p )
= C 0 A d sinc ( 1 d )

Metrics