Abstract

We report the first waveguide laser based on a rare-earth-doped sesquioxide. A 2 μm thick lattice matched Nd(0.5%):(Gd, Lu)2O3 film with a nearly atomically flat surface has been epitaxially grown on a Y2O3 substrate, using pulsed laser deposition. The film has been structured with reactive ion etching and a rib channel waveguide laser has been realized. Laser radiation at 1075 nm and 1079 nm has been observed under 820-nm pumping. The laser possesses a threshold power of about 0.8 mW and a preliminary slope efficiency of 0.5% versus incident pump power. A maximum output power of 1.8 mW has been obtained for 370 mW incident pump power.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm

Henning Kühn, Sebastian Heinrich, Andreas Kahn, Klaus Petermann, Jonathan D. B. Bradley, Kerstin Wörhoff, Markus Pollnau, and Günter Huber
Opt. Lett. 34(18) 2718-2720 (2009)

Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94  µm

C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos
Opt. Lett. 22(13) 988-990 (1997)

Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau
Opt. Express 18(9) 8853-8858 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Select. Topics Quantum Electron. 13, 626–637 (2007).
    [Crossref]
  2. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
    [Crossref] [PubMed]
  3. C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys.: Condens. Matter 20, 264011 (2008).
    [Crossref]
  4. M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
    [Crossref]
  5. K. L. Saenger, “Pulsed Laser Deposition (Part I) - A Review of Process Characteristics and Capabilities,” Processing of Advanced Materials 2, 1–24 (1993).
  6. K. L. Saenger, “Pulsed Laser Deposition (Part II) - A Review of Process Mechanisms,” Processing of Advanced Materials 3, 63–82 (1993).
  7. G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
    [Crossref]
  8. D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
    [Crossref]
  9. T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
    [Crossref]
  10. A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850–1853 (2008).
    [Crossref]
  11. E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
    [Crossref]
  12. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett. 17, 52–54 (1992).
    [Crossref] [PubMed]
  13. R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
    [Crossref]
  14. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
    [Crossref] [PubMed]
  15. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
    [Crossref]
  16. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).
  17. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
    [Crossref] [PubMed]
  18. L. Fornasiero, “Nd3+ and Tm3+-dotierte Sesquioxide,” Ph.D. thesis, Universität Hamburg (1999).
  19. H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. 10, 563–567 (1974).
    [Crossref]

2008 (3)

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys.: Condens. Matter 20, 264011 (2008).
[Crossref]

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[Crossref]

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850–1853 (2008).
[Crossref]

2007 (5)

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007).
[Crossref] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007).
[Crossref] [PubMed]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
[Crossref]

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Select. Topics Quantum Electron. 13, 626–637 (2007).
[Crossref]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

2005 (1)

1999 (1)

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

1997 (1)

G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
[Crossref]

1996 (1)

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

1993 (2)

K. L. Saenger, “Pulsed Laser Deposition (Part I) - A Review of Process Characteristics and Capabilities,” Processing of Advanced Materials 2, 1–24 (1993).

K. L. Saenger, “Pulsed Laser Deposition (Part II) - A Review of Process Mechanisms,” Processing of Advanced Materials 3, 63–82 (1993).

1992 (1)

1989 (1)

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

1974 (1)

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. 10, 563–567 (1974).
[Crossref]

Anderson, A. A.

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

Ay, F.

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

Beilschmidt, L.

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

Blank, D. H. A.

G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
[Crossref]

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

Bradley, J. D. B.

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850–1853 (2008).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

Chandler, P. J.

Dötsch, H.

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

Eason, R. W.

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys.: Condens. Matter 20, 264011 (2008).
[Crossref]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

Field, S. J.

Fornasiero, L.

L. Fornasiero, “Nd3+ and Tm3+-dotierte Sesquioxide,” Ph.D. thesis, Universität Hamburg (1999).

Fredrich-Thornton, S. T.

Frommeyer, M.

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

Gather, B.

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

Gerhardt, R.

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

Geskus, D.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

Gill, D. S.

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

Grezes-Besset, C.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Grivas, C.

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys.: Condens. Matter 20, 264011 (2008).
[Crossref]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

Gün, T.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[Crossref]

Hanna, D. C.

He, Q.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Heinrich, S.

Huber, G.

Ileri, B.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[Crossref]

Kahn, A.

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[Crossref]

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850–1853 (2008).
[Crossref]

Khrushchev, I.

Kleine-Börger, J.

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

Koster, G.

G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
[Crossref]

Kränkel, C.

Kühn, H.

Kuzminykh, Y.

Lallier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Large, A. C.

Laversenne, L.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

Li, M. J.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Liao, P. F.

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. 10, 563–567 (1974).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Select. Topics Quantum Electron. 13, 626–637 (2007).
[Crossref]

Micheli, M. De

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Mitchell, J.

Okhrimchuk, A. G.

Ostrowsky, D. B.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Papuchon, M.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Pelletier, E.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Petermann, K.

Peters, R.

Pocholle, J. P.

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

Pollnau, M.

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850–1853 (2008).
[Crossref]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

Rijnders, G. J. H. M.

G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
[Crossref]

Rogalla, H.

G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
[Crossref]

Saenger, K. L.

K. L. Saenger, “Pulsed Laser Deposition (Part I) - A Review of Process Characteristics and Capabilities,” Processing of Advanced Materials 2, 1–24 (1993).

K. L. Saenger, “Pulsed Laser Deposition (Part II) - A Review of Process Mechanisms,” Processing of Advanced Materials 3, 63–82 (1993).

Shepherd, D. P.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett. 17, 52–54 (1992).
[Crossref] [PubMed]

Shestakov, A. V.

Tofield, B. C.

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. 10, 563–567 (1974).
[Crossref]

Townsend, P. D.

Tropper, A. C.

Warburton, T. J.

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

Weber, H. P.

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. 10, 563–567 (1974).
[Crossref]

Wilkinson, J. S.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

Wörhoff, K.

A. Kahn, H. Kühn, S. Heinrich, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, Y. Kuzminykh, and G. Huber, “Amplification in epitaxially grown Er:(Gd, Lu)2O3 waveguides for active integrated optical devices,” J. Opt. Soc. Am. B 25, 1850–1853 (2008).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

Zhang, L.

Appl. Phys. B (1)

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89, 311–318 (2007).
[Crossref]

Appl. Phys. Lett. (4)

R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeyer, H. Dötsch, and B. Gather, “Efficient channel-waveguide laser in Nd:GGG at 1.062 μm wavelength,” Appl. Phys. Lett. 75, 1210–1212 (1999).
[Crossref]

G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, “In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure,” Appl. Phys. Lett. 70, 1888–1890 (1997).
[Crossref]

D. S. Gill, A. A. Anderson, R. W. Eason, T. J. Warburton, and D. P. Shepherd, “Laser operation of an Nd:Gd3Ga5O12 thin-film optical waveguide fabricated by pulsed laser deposition,” Appl. Phys. Lett. 69, 10–12 (1996).
[Crossref]

T. Gün, A. Kahn, B. İleri, K. Petermann, and G. Huber, “Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3-films on Y2O3 by pulsed laser deposition,” Appl. Phys. Lett. 93, 053108 (2008).
[Crossref]

Electron. Lett. (1)

E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He, and D. B. Ostrowsky, ”Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

H. P. Weber, P. F. Liao, and B. C. Tofield, “Emission cross section and fluorescence efficiency of Nd-pentaphosphate,” IEEE J. Quantum Electron. 10, 563–567 (1974).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Select. Topics Quantum Electron. 13, 626–637 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

C. Grivas and R. W. Eason, “Dielectric binary oxide films as waveguide laser media: a review,” J. Phys.: Condens. Matter 20, 264011 (2008).
[Crossref]

Laser Phys. Lett. (1)

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4, 560–571 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Processing of Advanced Materials (2)

K. L. Saenger, “Pulsed Laser Deposition (Part I) - A Review of Process Characteristics and Capabilities,” Processing of Advanced Materials 2, 1–24 (1993).

K. L. Saenger, “Pulsed Laser Deposition (Part II) - A Review of Process Mechanisms,” Processing of Advanced Materials 3, 63–82 (1993).

Other (2)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Sel. Top. Quantum Electron. Accepted for publication (2008).

L. Fornasiero, “Nd3+ and Tm3+-dotierte Sesquioxide,” Ph.D. thesis, Universität Hamburg (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Emission cross sections of a Nd:(Gd, Lu)2O3 film (black curve) in comparison with the ones measured in [18] for a Nd:Y2O3 bulk crystal (grey curve). The waveguide laser spectrum (intensity in arbitrary units) is plotted as red curve and magnified in the inset.
Fig. 2.
Fig. 2. Waveguide laser setup. A Ti:Al2O3 laser beam at 820 nm was coupled into a waveguide channel, using a microscope objective with a NA of 0.35. The outcoupled light was collected by a microscope objective with a NA of 0.7. Two dichroic mirrors were used as filters for the pump light. A thin glass plate served as beam splitter to measure input and output power simultaneously. P 1, P 2 and P laser,out indicate positions used for these power measurements.
Fig. 3.
Fig. 3. Intensity distribution of the outcoupled laser light. The corresponding intensity profiles I(x) and I(y) (black curves) are fitted with Gaussian functions (red curves).
Fig. 4.
Fig. 4. Laser output power P laser,out plotted against the incident pump power P pump,in. A slope efficiency of 0.5 % has been determined with a linear fit (red curve) of the measured data points (black squares). The inset shows the measurement results (black squares) for the determination of the laser threshold with a linear fit (red curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = 10 × log P out P in dB .

Metrics