Abstract

Gratings were recorded on the surface of nickel by ablation without formation of ripples using an interference of two p-polarized femtosecond laser beams at a π/4 angle of incidence. The mechanism of ripples’ suppression is explained by formation of a polarization grating and by ablation at the locations where the polarization is normal to the Ni surface. The aspect ratio of the ablated grooves was ~ 3 with the period ~ 570 nm at the central wavelength of irradiation of 800 nm. This method is applicable for laser structuring of different materials and a recorded grating structure can be scaled with the irradiation wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Birnbaum, "Semiconductor surface damage produced by ruby lasers," J. Appl. Phys. 36, 3688-3689 (1965).
    [CrossRef]
  2. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).
  3. D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973).
    [CrossRef]
  4. Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
    [CrossRef]
  5. D. Bäuerle, Laser processing and chemistry (Springer, Berlin, 2000).
  6. G. Miyaji and K. Miyazaki, "Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser," Opt. Express 16, 16265-16271 (2008).
    [CrossRef] [PubMed]
  7. W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
    [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
    [CrossRef]
  9. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
    [CrossRef]
  10. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, "Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching," Opt. Express 16, 1517-1522 (2008).
    [CrossRef] [PubMed]
  11. S. Juodkazis, N. Kujime, H. Okuno, V. Mizeikis, S. Matsuo, and H. Misawa,"Towards nanostructuring of materials by ripples" in Proc. of Joint Int. Workshop CREST& QNN’03, Jul. 21-23, 2003; Awaji, Japan, 117-121 (2003).
  12. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).
  13. A. E. Siegman and P. M. Fauchet, "Stimulated Wood’s anomalies on laser- illuminated surfaces," IEEE J. Quant. Electr. QE-22, 1384 - 1403 (1986).
    [CrossRef]
  14. S. E. Clark and D. Emmony, "Ultraviolet-laser-induced periodic surface structures," Phys. Rev. B 40, 2031-2041 (1989).
  15. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).
  16. X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
    [CrossRef]
  17. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
    [CrossRef]
  18. H. Morikami, H. Yoneda, K.-I. Ueda, and R. M. More, "Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments," Phys. Rev. E 70, 035401(R)/1-3 (2004).
  19. P. Günter and J.-P. Huignard, Photorefractive materials and their applications 1: basic effects (Springer, New York, 2006).
    [CrossRef]
  20. S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional structuring of resists and resins by direct laser writing and holographic recording," Adv. Polym. Sci. 213, 157-206 (2008).
  21. F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
    [CrossRef] [PubMed]
  22. E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).
  23. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, "Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses," Opt. Express 16, 12650-12657 (2008).
    [PubMed]
  24. H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
    [CrossRef]
  25. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
    [CrossRef]
  26. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
    [CrossRef]
  27. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
    [CrossRef]
  28. T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007).
    [CrossRef]
  29. K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
    [CrossRef]
  30. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

2008

2007

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007).
[CrossRef]

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
[CrossRef]

2006

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
[CrossRef]

2005

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
[CrossRef]

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

2004

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

2003

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
[CrossRef]

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

1989

S. E. Clark and D. Emmony, "Ultraviolet-laser-induced periodic surface structures," Phys. Rev. B 40, 2031-2041 (1989).

1987

F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
[CrossRef] [PubMed]

1986

A. E. Siegman and P. M. Fauchet, "Stimulated Wood’s anomalies on laser- illuminated surfaces," IEEE J. Quant. Electr. QE-22, 1384 - 1403 (1986).
[CrossRef]

1985

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).

1983

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).

1973

D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973).
[CrossRef]

1965

M. J. Birnbaum, "Semiconductor surface damage produced by ruby lasers," J. Appl. Phys. 36, 3688-3689 (1965).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Birnbaum, M. J.

M. J. Birnbaum, "Semiconductor surface damage produced by ruby lasers," J. Appl. Phys. 36, 3688-3689 (1965).
[CrossRef]

Brandt, N.

Brunel, F.

F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
[CrossRef] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Clark, S. E.

S. E. Clark and D. Emmony, "Ultraviolet-laser-induced periodic surface structures," Phys. Rev. B 40, 2031-2041 (1989).

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
[CrossRef]

Daminelli, G.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
[CrossRef]

Duering, M.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Emel’yanov, V. I.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).

Emmony, D.

S. E. Clark and D. Emmony, "Ultraviolet-laser-induced periodic surface structures," Phys. Rev. B 40, 2031-2041 (1989).

D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973).
[CrossRef]

Emoto, A.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

Fauchet, P. M.

A. E. Siegman and P. M. Fauchet, "Stimulated Wood’s anomalies on laser- illuminated surfaces," IEEE J. Quant. Electr. QE-22, 1384 - 1403 (1986).
[CrossRef]

Fukumura, H.

Gamaly, E. G.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
[CrossRef]

Gottmann, J.

Hasegawa, T.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

Hashimoto, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
[CrossRef]

Hashimoto, T.

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007).
[CrossRef]

Hatanaka, K.

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
[CrossRef]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Horn-Solle, H.

Howson, R.

D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973).
[CrossRef]

Huang, M.

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

Ida, T.

Jia, T. Q.

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

Juodkazis, S.

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, "Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses," Opt. Express 16, 12650-12657 (2008).
[PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional structuring of resists and resins by direct laser writing and holographic recording," Adv. Polym. Sci. 213, 157-206 (2008).

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007).
[CrossRef]

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
[CrossRef]

Kautek, W.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
[CrossRef]

Kawatsuki, N.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
[CrossRef]

Kinoshita, K.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
[CrossRef]

Kitamura, K.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
[CrossRef]

Kolev, V. Z.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Koroteev, N. I.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).

Krüger, J.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
[CrossRef]

Liao, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

Louchev, O. A.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
[CrossRef]

Luk’yanchuk, B.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Luther-Davis, B.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

Madsen, N. R.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Matsuo, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
[CrossRef]

Matsushima, S.-I.

Misawa, H.

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, "Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses," Opt. Express 16, 12650-12657 (2008).
[PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional structuring of resists and resins by direct laser writing and holographic recording," Adv. Polym. Sci. 213, 157-206 (2008).

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007).
[CrossRef]

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
[CrossRef]

Miyaji, G.

Miyazaki, K.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional structuring of resists and resins by direct laser writing and holographic recording," Adv. Polym. Sci. 213, 157-206 (2008).

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

Ono, H.

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, "Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses," Opt. Express 16, 12650-12657 (2008).
[PubMed]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

Pelcovits, R. A.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
[CrossRef]

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
[CrossRef]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Rode, A. V.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Rudolph, P.

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
[CrossRef]

Seminogov, V. N.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).

Sheppard, C.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Shi, L.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
[CrossRef]

Siegman, A. E.

A. E. Siegman and P. M. Fauchet, "Stimulated Wood’s anomalies on laser- illuminated surfaces," IEEE J. Quant. Electr. QE-22, 1384 - 1403 (1986).
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).

Takahashi, F.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Tomita, T.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
[CrossRef]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).

Wang, H.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

Willis, L.

D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973).
[CrossRef]

Wortmann, D.

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

Wu, X. J.

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

Xu, N. S.

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
[CrossRef]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

Zhao, F. L.

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

Adv. Polym. Sci.

S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional structuring of resists and resins by direct laser writing and holographic recording," Adv. Polym. Sci. 213, 157-206 (2008).

Appl. Phys. A

X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007).
[CrossRef]

W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005).
[CrossRef]

Appl. Phys. A: Mat. Sci. Proc.

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

Appl. Phys. Lett.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006).
[CrossRef]

D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973).
[CrossRef]

Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007).
[CrossRef]

IEEE J. Quant. Electr.

A. E. Siegman and P. M. Fauchet, "Stimulated Wood’s anomalies on laser- illuminated surfaces," IEEE J. Quant. Electr. QE-22, 1384 - 1403 (1986).
[CrossRef]

J. Appl. Phys.

M. J. Birnbaum, "Semiconductor surface damage produced by ruby lasers," J. Appl. Phys. 36, 3688-3689 (1965).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003).
[CrossRef]

Nanotechnology

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006).
[CrossRef]

Nature Photon.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008).
[CrossRef]

New. J. Phys.

T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007).
[CrossRef]

Opt. Express

Phys Rev. B

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).

Phys. Rev. B

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).

S. E. Clark and D. Emmony, "Ultraviolet-laser-induced periodic surface structures," Phys. Rev. B 40, 2031-2041 (1989).

Phys. Rev. Lett.

F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006).
[CrossRef]

Sov. Phys. Usp.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).

Other

H. Morikami, H. Yoneda, K.-I. Ueda, and R. M. More, "Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments," Phys. Rev. E 70, 035401(R)/1-3 (2004).

P. Günter and J.-P. Huignard, Photorefractive materials and their applications 1: basic effects (Springer, New York, 2006).
[CrossRef]

S. Juodkazis, N. Kujime, H. Okuno, V. Mizeikis, S. Matsuo, and H. Misawa,"Towards nanostructuring of materials by ripples" in Proc. of Joint Int. Workshop CREST& QNN’03, Jul. 21-23, 2003; Awaji, Japan, 117-121 (2003).

D. Bäuerle, Laser processing and chemistry (Springer, Berlin, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

SEM top (a) and cross-sectional (b) images of Ni sample after ablation by two-beam interference pattern. Geometry of experiment is shown in the inset of the panel (b). The central wavelength was λ0 = 800 nm, pulse duration 130 fs, exposure time 1/6 s at 1 kHz repetition rate; the number of pulses was N = 160. Period of ablation pattern was Λ = λ0/(2sinθ) ≃ 566 nm. The incident power of the beams was 6.0 μJ/pulse and the ablated area was around 30 μm in diameter. The cumulative irradiance was approximately 10% above the threshold of ablation.

Fig. 2.
Fig. 2.

(a) The polarization grating formed by interference of two p-polarized beams (see, the inset of Fig. 1(b)) at the mutual incidence angle of 2θ = π/2. The E-field components perpendicular and parallel to the surface are marked as E (orEy ) and E (Ex ), respectively; ω is the cyclic frequency and t denotes time (see, Eq. 5). (b) The 3D-FDTD calculation of the |Ex,y |2 intensity distribution of Gaussian beams on the surface of a metal (gold was used for the perfect metal) for the experimental conditions shown in (b). The dashed line in (b) shows location of surface; the intensity maxima are 4.7 and 4 for the Ex 2 and Ey 2 components, respectively (the amplitude of the incident field is |Ein | = 1).

Fig. 3.
Fig. 3.

SEM images of the ablated Ni surface and the efficacy factors (Eq. 3) for s- (a) and p-polarizations (b), respectively. The angle of incidence was θ = 45° (the corresponding period of the gratings is Λ = λ 0/(2sinθ) ≃ 566 nm); the surface projection of polarizations and wavevectors are schematically shown in the insets; φ is the angle on the sample’s surface out of the plane of incidence (out of x-axis). The number of pulses was N < 15 at the cumulative irradiance 10% above the ablation threshold. SEM image of the Ni surface ablated by imperfectly overlapped p-pol. beams is shown as the lower inset in (b). Scale bars are 1 μm. Optical parameters used for estimation of η are n = 2.27, κ = 3.27, and geometrical parameters F = 0.1, s = 0.4. See, text and Appendix for details.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) η ( k , k i ) × b ( k ) ,
k i ± k = { k 0 , if ε 1 k 0 n , if n 1
η ( k , k i ) = 2 π v ( k + ) + v * ( k ) ,
w = w 0 ( 1 + tr Δ m cos ( Kx ) )
Δ m = 2 A A A B A A 2 + A B 2 cos 2 θ 0 1 2 sin 2 θ 0 0 0 1 2 sin 2 θ 0 sin 2 θ ,
v ( k ± ) = [ h ss ( k ± ) ( k ± · x ) 2 + h kk ( k ± ) ( k ± · y ) 2 ] γ t | t S ( k i ) 2 ( for s − pol.)
v ( k ± ) = [ h ss ( k ± ) ( k ± · y ) 2 + h kk ( k ± ) ( k ± · x ) 2 ] γ t t x 2 + h kz ( k ± ) ( k ± · x ) γ z ε t x * t z
+ h zk ( k ± ) ( k ± · x ) γ t t z * t x + h zz ( k ± ) γ z ε t z 2 ( for p pol . ) ,
h ss = 2 1 k 0 ( w 0 + w ) 1
h kk = 2 1 w 0 w k 0 1 ( w 0 ε + w ) 1
h zz = 2 1 k 2 k 0 1 ( w 0 ε + w ) 1
h zk = 2 1 k w 0 k 0 1 ( w 0 ε w ) 1
h kz = 2 1 wk k 0 1 ( w 0 ε + w ) 1

Metrics