Abstract

Site-selective spectroscopy and stimulated emission experiments performed in the 4F3/24I11/2 laser transition of Nd3+-doped 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass are presented. The spectral features of the excitation spectra and those of spontaneous and stimulated emissions reveal the existence of a very complex crystal field site distribution for Nd3+ ions. As a consequence, the stimulated emission of Nd3+ in this glass shows a tunability of about 10 nm as a function of excitation wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, "Optical maser action of Nd3+ in a barium crown glass," Phys. Rev. Lett. 7, 444-446 (1961).
    [CrossRef]
  2. M. J. Weber, "Science and technology of laser glass," J. Non-Cryst. Solids 123, 208-222 (1990).
    [CrossRef]
  3. R. R. Jacobs and M. J. Weber, "Dependence of the 4F3/2→4I11/2 Induced-Emission Cross Section for Nd3+ on glass composition," IEEE J. Quantum Electron. QE-12, 102-111 (1976).
    [CrossRef]
  4. H. Takebe, Y. Nageno, and K. Morinaga, "Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc. 78, 1161-1168 (1995).
    [CrossRef]
  5. H. Takebe, K. Morinaga, and T. Izumitani, "Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses," J. Non-Cryst. Solids 178, 58-63 (1994).
    [CrossRef]
  6. P.N. De Aza, F. Guitian, and S. De Aza, "Phase diagram of wollastonite-tricalcium phosphate," J. Am. Ceram. Soc. 78, 1653-1656 (1995).
    [CrossRef]
  7. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
    [CrossRef]
  8. J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
    [CrossRef]
  9. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, "On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses," Opt. Express 16, 11894-11906 (2008).
    [CrossRef] [PubMed]

2008 (1)

2002 (1)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

1996 (1)

J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
[CrossRef]

1995 (2)

P.N. De Aza, F. Guitian, and S. De Aza, "Phase diagram of wollastonite-tricalcium phosphate," J. Am. Ceram. Soc. 78, 1653-1656 (1995).
[CrossRef]

H. Takebe, Y. Nageno, and K. Morinaga, "Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc. 78, 1161-1168 (1995).
[CrossRef]

1994 (1)

H. Takebe, K. Morinaga, and T. Izumitani, "Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses," J. Non-Cryst. Solids 178, 58-63 (1994).
[CrossRef]

1990 (1)

M. J. Weber, "Science and technology of laser glass," J. Non-Cryst. Solids 123, 208-222 (1990).
[CrossRef]

1976 (1)

R. R. Jacobs and M. J. Weber, "Dependence of the 4F3/2→4I11/2 Induced-Emission Cross Section for Nd3+ on glass composition," IEEE J. Quantum Electron. QE-12, 102-111 (1976).
[CrossRef]

1961 (1)

E. Snitzer, "Optical maser action of Nd3+ in a barium crown glass," Phys. Rev. Lett. 7, 444-446 (1961).
[CrossRef]

Azkargorta, J.

Balda, R.

Cases, R.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

De Aza, P.N.

P.N. De Aza, F. Guitian, and S. De Aza, "Phase diagram of wollastonite-tricalcium phosphate," J. Am. Ceram. Soc. 78, 1653-1656 (1995).
[CrossRef]

De Aza, S.

P.N. De Aza, F. Guitian, and S. De Aza, "Phase diagram of wollastonite-tricalcium phosphate," J. Am. Ceram. Soc. 78, 1653-1656 (1995).
[CrossRef]

de la Fuente, G. F.

J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
[CrossRef]

Fernández, J.

Guitian, F.

P.N. De Aza, F. Guitian, and S. De Aza, "Phase diagram of wollastonite-tricalcium phosphate," J. Am. Ceram. Soc. 78, 1653-1656 (1995).
[CrossRef]

Iparraguirre, I.

Izumitani, T.

H. Takebe, K. Morinaga, and T. Izumitani, "Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses," J. Non-Cryst. Solids 178, 58-63 (1994).
[CrossRef]

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, "Dependence of the 4F3/2→4I11/2 Induced-Emission Cross Section for Nd3+ on glass composition," IEEE J. Quantum Electron. QE-12, 102-111 (1976).
[CrossRef]

Larrea, A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

Merino, R. I.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
[CrossRef]

Morinaga, K.

H. Takebe, Y. Nageno, and K. Morinaga, "Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc. 78, 1161-1168 (1995).
[CrossRef]

H. Takebe, K. Morinaga, and T. Izumitani, "Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses," J. Non-Cryst. Solids 178, 58-63 (1994).
[CrossRef]

Nageno, Y.

H. Takebe, Y. Nageno, and K. Morinaga, "Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc. 78, 1161-1168 (1995).
[CrossRef]

Orera, V.

J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
[CrossRef]

Orera, V. M.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

Pardo, J. A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

Peña, J. I.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
[CrossRef]

Snitzer, E.

E. Snitzer, "Optical maser action of Nd3+ in a barium crown glass," Phys. Rev. Lett. 7, 444-446 (1961).
[CrossRef]

Takebe, H.

H. Takebe, Y. Nageno, and K. Morinaga, "Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc. 78, 1161-1168 (1995).
[CrossRef]

H. Takebe, K. Morinaga, and T. Izumitani, "Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses," J. Non-Cryst. Solids 178, 58-63 (1994).
[CrossRef]

Weber, M. J.

M. J. Weber, "Science and technology of laser glass," J. Non-Cryst. Solids 123, 208-222 (1990).
[CrossRef]

R. R. Jacobs and M. J. Weber, "Dependence of the 4F3/2→4I11/2 Induced-Emission Cross Section for Nd3+ on glass composition," IEEE J. Quantum Electron. QE-12, 102-111 (1976).
[CrossRef]

Adv. Mater. (1)

J. I. Peña, R. I. Merino, G. F. de la Fuente, and V. Orera, "Aligned ZrO2 (c)- CaZrO3 eutectics grown by the laser floating zone method: electrical and optical properties," Adv. Mater. 8, 906-909 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. R. Jacobs and M. J. Weber, "Dependence of the 4F3/2→4I11/2 Induced-Emission Cross Section for Nd3+ on glass composition," IEEE J. Quantum Electron. QE-12, 102-111 (1976).
[CrossRef]

J. Am. Ceram. Soc. (2)

H. Takebe, Y. Nageno, and K. Morinaga, "Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses," J. Am. Ceram. Soc. 78, 1161-1168 (1995).
[CrossRef]

P.N. De Aza, F. Guitian, and S. De Aza, "Phase diagram of wollastonite-tricalcium phosphate," J. Am. Ceram. Soc. 78, 1653-1656 (1995).
[CrossRef]

J. Non-Cryst. Solids (3)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, "Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition," J. Non-Cryst. Solids 298, 23-31 (2002).
[CrossRef]

H. Takebe, K. Morinaga, and T. Izumitani, "Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses," J. Non-Cryst. Solids 178, 58-63 (1994).
[CrossRef]

M. J. Weber, "Science and technology of laser glass," J. Non-Cryst. Solids 123, 208-222 (1990).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

E. Snitzer, "Optical maser action of Nd3+ in a barium crown glass," Phys. Rev. Lett. 7, 444-446 (1961).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Excitation spectra of the 4I9/24F3/2 transition obtained by collecting the luminescence at different emission wavelengths along the 4F3/24I11/2 emission. Data correspond to 4.2 K.

Fig. 2.
Fig. 2.

Steady-state emission spectra of the 4F3/24I11/2 transition for different excitation wavelengths along the low Stark component of the 4F3/2 level. Data correspond to 4.2 K.

Fig. 3.
Fig. 3.

Laser output spectra of 4F3/24I11/2 transition as a function of excitation wavelength.

Fig. 4.
Fig. 4.

Slope efficiency (output energy as a function of the absorbed energy), obtained by pumping at the peak position of the 4F5/2 electronic level.

Fig. 5.
Fig. 5.

Laser output spectra of 4F3/24I11/2 transition as a function of excitation wavelength.

Metrics