Abstract

Optical sensitivity is a major issue to improve the sensor responsivity and the spatial resolution of uncooled optomechanical focal plane arrays (FPA). The optical sensitivity is closely related to the mirror length and the undesired mirror deformation induced from the imbalanced residual stresses in different layers. In this paper, the influences of mirror length and deformation on the optical sensitivity are discussed by Fourier Optics. Theoretical analysis and experiments demonstrate that the optical sensitivity is seriously degraded by undesired mirror deformation, and that there exists an optimal mirror length which makes the optical sensitivity achieve its maximum under a certain mirror deformation. Based on the results, an optimized mirror configuration is presented to increase the optical sensitivity of substrate-free bi-material microcantilever array (SFBMA).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kohin and N. Butler, "Performance limits of uncooled VOx microbolometer focal plane arrays," Proc. SPIE 5406, 447-453(2004).
    [CrossRef]
  2. C. M. Hanson, "Barriers to background-limited performance for uncooled IR sensors," Proc. SPIE 5406, 454-464(2004).
    [CrossRef]
  3. J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
    [CrossRef]
  4. J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
    [CrossRef]
  5. E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
    [CrossRef]
  6. P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
    [CrossRef]
  7. P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Rev. Sci. Instrum. 75, 1134-1148 (2004).
    [CrossRef]
  8. A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron 27, 59-210(2003).
    [CrossRef]
  9. R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
    [CrossRef]
  10. S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, "High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays," Proc. SPIE 6542, 65421F-1-13 (2007).
  11. J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
    [CrossRef]
  12. T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
    [CrossRef]
  13. Y. Zhao, M. Y. Mao, and R. Horowitz, "Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance," J. Microelectromech. S. 11, 136-146 (2002).
    [CrossRef]
  14. Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
    [CrossRef]
  15. Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
    [CrossRef] [PubMed]
  16. F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
    [CrossRef]
  17. Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
    [CrossRef] [PubMed]
  18. Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
    [CrossRef]
  19. Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, "The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system," J. Appl. Phys. 102, 113524-1-6 (2007).
    [CrossRef]
  20. G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. 82, 172-175 (1909).
    [CrossRef]
  21. Y. Min and Y. Kim, "In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers," J. Micromech. Microeng. 10, 314-321 (2000).
    [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Chap. 5.
  23. C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
    [CrossRef]
  24. S. Garcia-Blanco, P. Topart, Y. Desroches, J. S. Caron, F. Williamson, C. Alain, and H. Jerominek, "Low-temperature vacuum hermetic wafer-level package for uncooled microbolometer FPAs," Proc. SPIE 6884, 68840P-1-8 (2008).
  25. T. Cheng and Q. Zhang, "Uncooled Infrared Imaging Using a Substrate-Free Focal-Plane Array," IEEE Electron. Device Lett. 29, 1218-1221 (2008).
    [CrossRef]
  26. D. Grbovic, N. Lavrik, S. Rajic, and P. Datskos, "Arrays of SiO substrate-free micromechanical uncooled infrared and terahertz detectors," J. Appl. Phys. 104, 054508-1-7 (2008).
    [CrossRef]

2008 (1)

T. Cheng and Q. Zhang, "Uncooled Infrared Imaging Using a Substrate-Free Focal-Plane Array," IEEE Electron. Device Lett. 29, 1218-1221 (2008).
[CrossRef]

2007 (4)

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

2006 (1)

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

2004 (3)

M. Kohin and N. Butler, "Performance limits of uncooled VOx microbolometer focal plane arrays," Proc. SPIE 5406, 447-453(2004).
[CrossRef]

C. M. Hanson, "Barriers to background-limited performance for uncooled IR sensors," Proc. SPIE 5406, 454-464(2004).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

2003 (2)

A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron 27, 59-210(2003).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

2002 (1)

Y. Zhao, M. Y. Mao, and R. Horowitz, "Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance," J. Microelectromech. S. 11, 136-146 (2002).
[CrossRef]

2000 (1)

Y. Min and Y. Kim, "In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers," J. Micromech. Microeng. 10, 314-321 (2000).
[CrossRef]

1999 (1)

T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

1998 (1)

R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
[CrossRef]

1997 (1)

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

1996 (2)

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

1994 (2)

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
[CrossRef]

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

1909 (1)

G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. 82, 172-175 (1909).
[CrossRef]

Amantea, R.

R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
[CrossRef]

Barnes, J. R.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

Butler, N.

M. Kohin and N. Butler, "Performance limits of uncooled VOx microbolometer focal plane arrays," Proc. SPIE 5406, 447-453(2004).
[CrossRef]

Chen, D.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Cheng, T.

T. Cheng and Q. Zhang, "Uncooled Infrared Imaging Using a Substrate-Free Focal-Plane Array," IEEE Electron. Device Lett. 29, 1218-1221 (2008).
[CrossRef]

Datskos, P. G.

P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

Dong, F.

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Duan, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Gerber, Ch.

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
[CrossRef]

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

Gimzewski, J. K.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Goodman, L. A.

R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
[CrossRef]

Guo, Z.

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Hanson, C. M.

C. M. Hanson, "Barriers to background-limited performance for uncooled IR sensors," Proc. SPIE 5406, 454-464(2004).
[CrossRef]

Horowitz, R.

Y. Zhao, M. Y. Mao, and R. Horowitz, "Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance," J. Microelectromech. S. 11, 136-146 (2002).
[CrossRef]

Hunter, S. R.

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

Jiao, B.

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Kim, Y.

Y. Min and Y. Kim, "In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers," J. Micromech. Microeng. 10, 314-321 (2000).
[CrossRef]

Kohin, M.

M. Kohin and N. Butler, "Performance limits of uncooled VOx microbolometer focal plane arrays," Proc. SPIE 5406, 447-453(2004).
[CrossRef]

Kwon, O.

T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

Lai, J.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

Lavrik, N. V.

P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Li, C.

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Majumdar, A.

T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

Mao, M.

T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

Mao, M. Y.

Y. Zhao, M. Y. Mao, and R. Horowitz, "Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance," J. Microelectromech. S. 11, 136-146 (2002).
[CrossRef]

Meyer, E.

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Miao, Z.

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Min, Y.

Y. Min and Y. Kim, "In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers," J. Micromech. Microeng. 10, 314-321 (2000).
[CrossRef]

Oden, P. I.

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

Pan, L.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Pantuso, F.

R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
[CrossRef]

Perazzo, T.

T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

Rajic, S.

P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Rogalski, A.

A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron 27, 59-210(2003).
[CrossRef]

Sauer, D. J.

R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
[CrossRef]

Schlittler, R. R.

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Shi, S.

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Shi, Z.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

Stephenson, S. J.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

Stoney, G.

G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. 82, 172-175 (1909).
[CrossRef]

Thundat, T.

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

Varesi, J.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

Wachter, E. A

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

Wachter, E. A.

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

Wang, W.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Warmack, R. J.

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

Welland, M. E.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

Wu, X.

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Xiong, Z.

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Ye, T.

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Zhang, Q.

T. Cheng and Q. Zhang, "Uncooled Infrared Imaging Using a Substrate-Free Focal-Plane Array," IEEE Electron. Device Lett. 29, 1218-1221 (2008).
[CrossRef]

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, "Optical readout method for microcantilever array sensing and its sensitivity analysis," Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Y. Mao, and R. Horowitz, "Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance," J. Microelectromech. S. 11, 136-146 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

P. G. Datskos, P. I. Oden, T. Thundat, E. A Wachter, and R. J. Warmack, and S. R. Hunter, "Remote infrared detection using piezoresistive microcantilevers," Appl. Phys. Lett. 69, 2986-2988 (1996).
[CrossRef]

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, "Photothermal measurements with picoWatt resolution using micro-optomechanical sensors," Appl. Phys. Lett. 71, 306-308 (1997).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, and A. Majumdar, "Infrared vision uncooled micro-optomechanical camera," Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

Chem.Phys. Lett. (1)

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, "Observation of a chemical reaction using a micromechanical sensor," Chem.Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, "Uncooled optically readable bimaterial micro-cantilever infrared imaging device," Chin. Phys. Lett. 20, 2130-2132 (2003).
[CrossRef]

IEEE Electron. Device Lett. (1)

T. Cheng and Q. Zhang, "Uncooled Infrared Imaging Using a Substrate-Free Focal-Plane Array," IEEE Electron. Device Lett. 29, 1218-1221 (2008).
[CrossRef]

J. Microelectromech. S. (1)

Y. Zhao, M. Y. Mao, and R. Horowitz, "Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance," J. Microelectromech. S. 11, 136-146 (2002).
[CrossRef]

J. Micromech. Microeng. (1)

Y. Min and Y. Kim, "In situ measurement of residual stress in micromachined thin films using a specimen with composite-layered cantilevers," J. Micromech. Microeng. 10, 314-321 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

C. Li, B. Jiao, S. Shi, D. Chen,T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, "A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance," Meas. Sci. Technol. 17, 1-6 (2006).
[CrossRef]

Nature (1)

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, "Photothermal spectroscopy with femtojoule sensitive using a micromechanical device," Nature 72, 79-82 (1994).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. (1)

G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. 82, 172-175 (1909).
[CrossRef]

Proc. SPIE (3)

M. Kohin and N. Butler, "Performance limits of uncooled VOx microbolometer focal plane arrays," Proc. SPIE 5406, 447-453(2004).
[CrossRef]

C. M. Hanson, "Barriers to background-limited performance for uncooled IR sensors," Proc. SPIE 5406, 454-464(2004).
[CrossRef]

R. Amantea, L. A. Goodman, F. Pantuso, D. J. Sauer, M. Varhese T. S. Villianni, and L. K. White, "Progress towards an uncooled IR imager with 5 mK NETD," Proc. SPIE 3436, 647-650 (1998).
[CrossRef]

Prog. Quantum Electron (1)

A. Rogalski, "Infrared detectors: status and trends," Prog. Quantum Electron 27, 59-210(2003).
[CrossRef]

Rev. Sci. Instrum (1)

E. A. Wachter, T. Thundat, P. G. Datskos, P. I. Oden, and R. J. Warmack, "Remote optical detection using microcantilevers," Rev. Sci. Instrum 67, 3434-3439 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Sens. Actuators A (2)

Z. Guo, Q. Zhang, F. Dong, D. Chen, Z. Xiong, Z. Miao, C. Li, B. Jiao, and X. Wu, "Performance analysis of microcantilever arrays for optical readout uncooled infrared imaging," Sens. Actuators A 137, 13-19 (2007).
[CrossRef]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, "An uncooled optically readable infrared imaging detector," Sens. Actuators A 133, 236-242 (2007).
[CrossRef]

Ultramicroscopy (1)

Z. Miao, Q. Zhang, D. Chen, Z. Guo, F. Dong, Z. Xiong, X. Wu, C. Li, and B. Jiao, "Uncooled IR imaging using optomechanical detectors," Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Other (5)

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, "The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system," J. Appl. Phys. 102, 113524-1-6 (2007).
[CrossRef]

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, "High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays," Proc. SPIE 6542, 65421F-1-13 (2007).

D. Grbovic, N. Lavrik, S. Rajic, and P. Datskos, "Arrays of SiO substrate-free micromechanical uncooled infrared and terahertz detectors," J. Appl. Phys. 104, 054508-1-7 (2008).
[CrossRef]

S. Garcia-Blanco, P. Topart, Y. Desroches, J. S. Caron, F. Williamson, C. Alain, and H. Jerominek, "Low-temperature vacuum hermetic wafer-level package for uncooled microbolometer FPAs," Proc. SPIE 6884, 68840P-1-8 (2008).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic diagram of a SFBMA structure: (a) An overall view of the SFBMA; (b) An overall view of an individual pixel; (c) A close-up of a half individual pixel where the microcantilever structure and the operation principle of SFBMA with two-fold interval metal-coated leg structure can be seen clearly.

Fig. 2.
Fig. 2.

Transmissivity of IR radiation in FPAs, side cross section of the traditional FPA structure with substrate (a) and the SFBMA (b).

Fig. 3.
Fig. 3.

Schematic diagram of the uncooled infrared imaging system using knife-edge filtering inspection method.

Fig. 4.
Fig. 4.

Concerned coordinates (the scale is magnified to show the mirror deformation). The dashed and the solid spectrums respectively correspond to ideal mirror and deformed mirror which have the same length.

Fig. 5.
Fig. 5.

Influence of mirror deformation on the optical sensitivity. (a) The normalized intensity distribution in the spectrum plane with different mirror deformation radius (Mirror length L=180μm). (b) Normalized intensity integrated by curves in (a). (c) Variations of the normalized optical sensitivity with respect to mirror deformation curvature under different mirror lengths (L=180μm and 50μm).

Fig. 6.
Fig. 6.

A 3D profile of two typical SFBMA pixels obtained by a Veeco Profiler

Fig. 7.
Fig. 7.

Surface profiles along the length direction of the mirrors of the SFBMAs in Table 1. (a) SFBMA1, (b) SFBMA2, (c) SFBMA3

Fig. 8.
Fig. 8.

Influence of mirror length on the optical sensitivity. (a)The normalized intensity integration distribution with different L but with the same mirror deformation(R =25mm). (b) Variations of the normalized optical sensitivity with respect to mirror length under different mirror deformations(R= 25mm and 6 mm).

Fig. 9.
Fig. 9.

Micro-fabrication process sequence of optimized SFBMA (a portion of the substrate is removed imaginarily): 1) 0.7-μm-thick SiNx was deposited on a double-polished Si wafer. 2) Back SiNx was etched to form wet-etch window patterning. 3) The pixel geometry was patterned using RIE. 4) Lift-off thick metallization formed bi-material legs. 5) Lift-off thin metallization formed mirrors. 6) Wet etch of the substrate Si resulted in a membrane structure.

Fig. 10.
Fig. 10.

A micrograph image of a portion of the fabricated SFBMA4. The inset shows a surface profile along the length direction of the mirror measured by a Veeco Profiler.

Fig. 11.
Fig. 11.

Relationship between the gray level (intensity) on CCD (12 bit) and the inclination angle of the mirrors. (a) The experimental curves and ratio (5.2) of SFBMA1 and SFBMA2 well agree with the theoretical analysis curves and ratio (5.5) in Fig. 5(b). (b) The experimental curves and ratio (0.74) of SFBMA1 and SFBMA3 well agree with the theoretical analysis curves and ratio (0.78) in Fig. 8(a).

Fig. 12.
Fig. 12.

With an f/0.8 IR lens, thermal image of a human hand was obtained using the fabricated SFBMA4.

Fig. 13.
Fig. 13.

The measuring experiments of the sensor responsivity and noise of SFBMA4. (a) IR source. (b) A thermal image of the source and the selected region for analysis. (c) Experimental grey responses of the CCD pixels in the selected region to temperature changes are statistically calculated and the average response, 22 gray/K, is taken as the sensor responsivity. (d) About 200 background images were serially captured and the grey fluctuations for the CCD pixels in the selected region are statistically calculated. The average fluctuation (7 grey levels) is taken as the sensor noise.

Tables (1)

Tables Icon

Table 1. Parameters in SFBMAs, whose bi-material leg are metalized 10-nm-thick Cr and 0.2-μm-thick Au.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

S sys = Δ N CCD / Δ T obj = H × S T × Θ ,
H = Δ T FPA Δ T obj , S T = Δ θ mir Δ T FPA , Θ = Δ N CCD Δ θ mir
Δ z = R R 2 x 2
Δ z x 2 / 2 R
I ( x f ; R , L ) = ( A / λf ) 2 + rect ( x / L ) exp ( j 2 π x 2 / λR ) × exp ( j 2 πx x f / λf ) dx 2
I nor ( x f ; R , L ) = I ( x f ; R , L ) / + I ( x f ; R , L ) d x f
N ( x f , R , L ) = x f I nor ( x f ; R , L ) d x f
Θ ( R , L ) = d d θ mir N ( x f , R , L ) x f = 0 = d d x f N ( x f , R , L ) x f = 0 × d d θ mir x f rad 1 .
d x f = 2 fd θ mir
G ( f x ) = + rect ( x / L ) exp ( j 2 π x 2 / λR ) × exp ( j 2 πx f X ) dx
+ G ( f X ) 2 d f X = + rect ( x / L ) exp ( j 2 π x 2 / λR ) 2 2 dx = L
+ I ( x f ; R , L ) d x f = ( A / λf ) 2 + G ( x f / λf ) 2 d x f = ( A / λf ) 2 λfL
Θ ( R , L ) = π 180 2 λL + rect ( x / L ) exp ( j 2 π x 2 / λR ) dx 2 deg 1
NETD = Δ N noise / S sys = 7 / 22 320 mK
I ( x f ; R , L ) = A 2 R 8 f 2 λ erf [ ( 1 2 i 2 ) π ( R x f fL ) 1 f ] + erf [ ( 1 2 i 2 ) π ( R x f + fL ) 1 f ] 2
Θ ( R , L ) = πR 180 L erf [ ( 1 2 i 2 ) L π 1 ] 2
L λR

Metrics