Abstract

The tunability of an omega–type left handed metamaterial was demonstrated at microwave frequencies via the magnetic control of liquid crystal (LC) orientation. From the experimental and simulation results, it is shown that the left handed pass-band can be tuned by 220 MHz by changing the orientation of LC molecules by 90°. A maximum index variation of 0.25 was obtained in the negative index regime with a measured LC birefringence of 0.05 in the 10 - 12GHz frequency band.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substrates with simultaneously negative values of ε and µ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  4. D. P. Gaillot, C. Croënne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express 16, 3986-3992 (2008).
    [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  6. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
    [CrossRef] [PubMed]
  7. I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
    [CrossRef]
  8. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express. 14, 9344-9349 (2006).
    [CrossRef] [PubMed]
  9. H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
    [CrossRef]
  10. A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
    [CrossRef] [PubMed]
  11. H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
    [CrossRef]
  12. J. Carbonell, V. E. Boria, and D. Lippens, "Resonators loaded with heterostructure barriere varactos," Microw. Opt. Technol. Lett. 50, 474-479 (2008).
    [CrossRef]
  13. T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105 (2008).
    [CrossRef]
  14. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006).
    [CrossRef]
  15. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
    [CrossRef] [PubMed]
  16. X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
    [CrossRef]
  17. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
    [CrossRef]
  18. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
    [CrossRef]
  19. J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
    [CrossRef]
  20. K. C. Lim, J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Appl. Phys. Lett. 62, 1065-1067 (1993).
    [CrossRef]
  21. F. Yang and J. R. Sambles, "Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique" Appl. Phys. Lett. 81, 2047-2049 (2002).
    [CrossRef]
  22. C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
    [CrossRef]
  23. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
    [CrossRef]
  24. D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  25. C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
    [CrossRef]
  26. T. R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, "Teraheratz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB," Appl. Opt. 42, 2372-2376 (2003).
    [CrossRef] [PubMed]
  27. H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008).
    [CrossRef] [PubMed]

2008

D. P. Gaillot, C. Croënne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express 16, 3986-3992 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

J. Carbonell, V. E. Boria, and D. Lippens, "Resonators loaded with heterostructure barriere varactos," Microw. Opt. Technol. Lett. 50, 474-479 (2008).
[CrossRef]

T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105 (2008).
[CrossRef]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008).
[CrossRef] [PubMed]

2007

A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
[CrossRef] [PubMed]

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

2006

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express. 14, 9344-9349 (2006).
[CrossRef] [PubMed]

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006).
[CrossRef]

2004

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

2003

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

T. R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, "Teraheratz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB," Appl. Opt. 42, 2372-2376 (2003).
[CrossRef] [PubMed]

2002

F. Yang and J. R. Sambles, "Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique" Appl. Phys. Lett. 81, 2047-2049 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1993

K. C. Lim, J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Appl. Phys. Lett. 62, 1065-1067 (1993).
[CrossRef]

1968

V. G. Veselago, "The electrodynamics of substrates with simultaneously negative values of ε and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Averitt, R. D.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Azadi, A. K.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Bahou, M.

Best, P.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

Bonache, J.

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Boria, V. E.

J. Carbonell, V. E. Boria, and D. Lippens, "Resonators loaded with heterostructure barriere varactos," Microw. Opt. Technol. Lett. 50, 474-479 (2008).
[CrossRef]

Carbonell, J.

J. Carbonell, V. E. Boria, and D. Lippens, "Resonators loaded with heterostructure barriere varactos," Microw. Opt. Technol. Lett. 50, 474-479 (2008).
[CrossRef]

Chen, A.

Chen, C.-Y.

T. R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, "Teraheratz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB," Appl. Opt. 42, 2372-2376 (2003).
[CrossRef] [PubMed]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Chen, H.

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Chen, H. S.

Chen, H.-T.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Chen, K.

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Cheng, X. X.

Croënne, C.

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

D. P. Gaillot, C. Croënne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express 16, 3986-3992 (2008).
[CrossRef] [PubMed]

Cummer, S. A.

T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Degiron, A.

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Elser, J.

Fabre, B.

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Gaillot, D.

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Gaillot, D. P.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

D. P. Gaillot, C. Croënne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express 16, 3986-3992 (2008).
[CrossRef] [PubMed]

García-García, J.

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Gil, I.

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Grzegorczyk, T. M.

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Gu, P. D.

Hand, T. H.

T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105 (2008).
[CrossRef]

Heussler, S. P.

Huangfu, J.

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Jakoby, R.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

Jian, L. K.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kalaiselvi, S. M. P.

Kang, L.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Khoo, I.-C.

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

Kildishev, A. V.

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Kivshar, Y. S.

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express. 14, 9344-9349 (2006).
[CrossRef] [PubMed]

Kong, J. A.

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008).
[CrossRef] [PubMed]

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Kwon, D.-H.

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Lackner, A. M.

K. C. Lim, J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Appl. Phys. Lett. 62, 1065-1067 (1993).
[CrossRef]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Lim, K. C.

K. C. Lim, J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Appl. Phys. Lett. 62, 1065-1067 (1993).
[CrossRef]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

Lippens, D.

D. P. Gaillot, C. Croënne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express 16, 3986-3992 (2008).
[CrossRef] [PubMed]

J. Carbonell, V. E. Boria, and D. Lippens, "Resonators loaded with heterostructure barriere varactos," Microw. Opt. Technol. Lett. 50, 474-479 (2008).
[CrossRef]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Liu, G.

Lüssem, G.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

Mahmood, S. B.

Maniam, S. M.

Margerum, J. D.

K. C. Lim, J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Appl. Phys. Lett. 62, 1065-1067 (1993).
[CrossRef]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Marqués, R.

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Martín, F.

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Mock, J. J.

A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Morrison, S. K.

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express. 14, 9344-9349 (2006).
[CrossRef] [PubMed]

Moser, H. O.

Müller, St.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

Narimanov, E. E.

O’Harai, J. F.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Padilla, W. J.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Pan, C.-L.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

T. R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, "Teraheratz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB," Appl. Opt. 42, 2372-2376 (2003).
[CrossRef] [PubMed]

Pan, R.-P.

T. R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, "Teraheratz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB," Appl. Opt. 42, 2372-2376 (2003).
[CrossRef] [PubMed]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

Ran, L.

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Sambles, J. R.

F. Yang and J. R. Sambles, "Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique" Appl. Phys. Lett. 81, 2047-2049 (2002).
[CrossRef]

Scheele, P.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

Schultz, D. R.

R. A. Shelby, D. R. Smith, and Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express. 14, 9344-9349 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Smith, D. R.

A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sorolla, M.

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Soukoulis, C M.

D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Taylor, A. J.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Tsai, T. R.

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Vanbésien, O.

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substrates with simultaneously negative values of ε and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Wang, X.

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Wangberg, R.

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

Weil, C.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

Wen, L.

Werner, D. H.

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007).
[CrossRef] [PubMed]

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Wu, B. I.

Wu, B.-I.

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, "Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique" Appl. Phys. Lett. 81, 2047-2049 (2002).
[CrossRef]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Zhang, F.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

Zhang, X.

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

Zhang, X.-C.

Zhao, Q.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Zhao, X.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

Zhou, J.

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008).
[CrossRef]

J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett. 84, 1537-1539 (2004).
[CrossRef]

K. C. Lim, J. D. Margerum, and A. M. Lackner, "Liquid crystal millimeter wave electronic phase shifter," Appl. Phys. Lett. 62, 1065-1067 (1993).
[CrossRef]

F. Yang and J. R. Sambles, "Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique" Appl. Phys. Lett. 81, 2047-2049 (2002).
[CrossRef]

Electron. Lett.

C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, "Highly-anisotropic liquid-crystal mixtures for tunable microwave devices," Electron. Lett. 39, 1732-1734 (2003).
[CrossRef]

I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

J. Appl. Phys.

T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

J. Carbonell, V. E. Boria, and D. Lippens, "Resonators loaded with heterostructure barriere varactos," Microw. Opt. Technol. Lett. 50, 474-479 (2008).
[CrossRef]

Nat. Photon.

H.-T. Chen, J. F. O’Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon. 2, 295-298 (2008).
[CrossRef]

Opt. Express

Opt. Express.

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express. 14, 9344-9349 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

D. R. Smith, S. Schultz, P. Markoš, and C M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B 77, 125333 (2008).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Science

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, "The electrodynamics of substrates with simultaneously negative values of ε and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the basic unit cell of the tunable negative index metamaterial as well as the reorientation of the LC molecule in the x-y plane. The geometry dimensions are as follows: R = 0.5, g = 0.4, w =1.0, tteflon = 1.0, tLC = 0.5 (unit: mm). The unit cell is stacked along the x and z directions with periodicities of 10.0 and 6.0 mm, respectively. (b) Close-up view of the mid-plane of the sample with the other part was removed to clarify the configuration of the voids.

Fig. 2.
Fig. 2.

(a) Extraordinary (black triangular) and ordinary (red circle) refractive indexes measured at room temperature as a function of frequency. (b) Birefringence of the nematic compound was deduced in the 10–12 GHz frequency band.

Fig. 3.
Fig. 3.

The experimental (a) and simulation (b) transmission responses of the metamaterial with infiltrated by LC under different molecules orientations: θ = 0° (solid black line) and 90° (dashed red line), respectively. (c) The local electric field distribution is plotted in the x-y plane at the magnetic resonance of omega pattern. Teflon fiberglass boards were invisible for clarity.

Fig. 4.
Fig. 4.

The real parts of retrieval indexes for metamaterial infiltrated by LC under different LC molecular reorientations: θ = 0° (solid black line) and 90° (dashed red line).

Fig. 5.
Fig. 5.

The measured phase shift for a nine-cell prototype when the LC molecules are reorientated from θ = 0° to 90°. The inset shows the phase delays for the two orientations of LC.

Metrics