Abstract

Mid-infrared (MIR) free space optical communication has seen renewed interest in recent years due to advances in quantum cascade lasers. We present data from a multi-wavelength test-bed operated in the New York metropolitan area under realistic weather conditions. We show that a mid-infrared source (8.1 μm) provides enhanced link stability with 2x to 3x greater transmission over near infrared wavelengths (1.3 μm & 1.5 μm) during fog formation and up to 10x after a short scavenging rain event where fog developed and visibility reduced to ~ 1 km. We attribute the improvement to less Mie scattering at longer wavelengths. We confirm that this result is generally consistent with the empirical benchmark Kruse model at visibilities above 2.5 km, but towards the 1 km eye-seeing limit we measured the equivalent MIR visibility to be > 10 km.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Performance of an optical wireless communication system as a function of wavelength

Haim Manor and Shlomi Arnon
Appl. Opt. 42(21) 4285-4294 (2003)

Empirical relationships between extinction coefficient and visibility in fog

Roberto Nebuloni
Appl. Opt. 44(18) 3795-3804 (2005)

The wavelength dependent model of extinction in fog and haze for free space optical communication

Martin Grabner and Vaclav Kvicera
Opt. Express 19(4) 3379-3386 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
    [Crossref]
  2. C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 4110 (2005).
  3. E. Korevaar, I. Kim, and B. McArthur, “Debunking the recurring myth of a magic wavelength for free-space optics,” Proc. SPIE 4873155 (2002).
    [Crossref]
  4. E. J. McCartney, Optics of the Atmosphere Scattering by Molecules and Particles (John Wiley & Sons, New York1976).
  5. P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, transmission, and detection (John Wiley & Sons, New York, 1962).
  6. H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks (Sams, Indianapolis, 2001).
  7. D. M. Chate and T. S. Pranesha, “Field Studies of scavenging of aerosols by rain events,” J. Aerosol Sci. 35, 695–706 (2004).
    [Crossref]

2005 (1)

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 4110 (2005).

2004 (1)

D. M. Chate and T. S. Pranesha, “Field Studies of scavenging of aerosols by rain events,” J. Aerosol Sci. 35, 695–706 (2004).
[Crossref]

2002 (2)

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

E. Korevaar, I. Kim, and B. McArthur, “Debunking the recurring myth of a magic wavelength for free-space optics,” Proc. SPIE 4873155 (2002).
[Crossref]

Baillargeon, J. N.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Bethea, C.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Capasso, F.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Chate, D. M.

D. M. Chate and T. S. Pranesha, “Field Studies of scavenging of aerosols by rain events,” J. Aerosol Sci. 35, 695–706 (2004).
[Crossref]

Cho, A. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Colvero, C. P.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 4110 (2005).

Cordeiro, M. C. R.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 4110 (2005).

Ghuman, B.

H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks (Sams, Indianapolis, 2001).

Gmachl, C.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Hwang, H. Y.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Kim, I.

E. Korevaar, I. Kim, and B. McArthur, “Debunking the recurring myth of a magic wavelength for free-space optics,” Proc. SPIE 4873155 (2002).
[Crossref]

Korevaar, E.

E. Korevaar, I. Kim, and B. McArthur, “Debunking the recurring myth of a magic wavelength for free-space optics,” Proc. SPIE 4873155 (2002).
[Crossref]

Kruse, P. W.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, transmission, and detection (John Wiley & Sons, New York, 1962).

Martini, R.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

McArthur, B.

E. Korevaar, I. Kim, and B. McArthur, “Debunking the recurring myth of a magic wavelength for free-space optics,” Proc. SPIE 4873155 (2002).
[Crossref]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere Scattering by Molecules and Particles (John Wiley & Sons, New York1976).

McGlauchlin, L. D.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, transmission, and detection (John Wiley & Sons, New York, 1962).

McQuistan, R. B.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, transmission, and detection (John Wiley & Sons, New York, 1962).

Paiella, R.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Pranesha, T. S.

D. M. Chate and T. S. Pranesha, “Field Studies of scavenging of aerosols by rain events,” J. Aerosol Sci. 35, 695–706 (2004).
[Crossref]

Sivco, D. L.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Weid, J. P. von der

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 4110 (2005).

Whittaker, E. A.

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

Willebrand, H.

H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks (Sams, Indianapolis, 2001).

Electron. Lett. (2)

R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-Space Optical Transmission of Multimedia Satellite Data Streams Using Mid- Infrared Quantum Cascade Lasers,” Electron. Lett. 38, 181–183 (2002).
[Crossref]

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 4110 (2005).

J. Aerosol Sci. (1)

D. M. Chate and T. S. Pranesha, “Field Studies of scavenging of aerosols by rain events,” J. Aerosol Sci. 35, 695–706 (2004).
[Crossref]

Proc. SPIE (1)

E. Korevaar, I. Kim, and B. McArthur, “Debunking the recurring myth of a magic wavelength for free-space optics,” Proc. SPIE 4873155 (2002).
[Crossref]

Other (3)

E. J. McCartney, Optics of the Atmosphere Scattering by Molecules and Particles (John Wiley & Sons, New York1976).

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, transmission, and detection (John Wiley & Sons, New York, 1962).

H. Willebrand and B. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks (Sams, Indianapolis, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental scheme. MIR, NIR and a He-Ne are coaxially coupled and measured through a 5 50 m path.

Fig. 2
Fig. 2

Transmission on October 19th, 2006. From top to bottom the sequence is (8.1, 1.558, 1.345) μ m. Stronger attenuation was seen at shorter wavelengths. The MIR scavenging event occurred just before 22:00.

Fig. 3.
Fig. 3.

Kruse model prediction with visibilities, V, (triangles) with experimental results for the 1.345 μm vs. 8.1 μm, and 1.558 μm vs. 8.1 μm cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ si = exp { 3.91 V [ λ i 0.55 ] q x }

Metrics