Abstract

A tunable microlens array by printing was demonstrated. An UV-curable adhesive, NOA65, was printed and cured to form a lens array profile on an ITO glass. Then this microlens array ITO glass was assembled with a normal ITO glass to form a cell, which was later filled with a liquid crystal. The focal length of the lens array can be tuned by an electric field, which changes the index difference between liquid crystals and NOA65 due to the reorientation of the LC molecules. In our experiment, the focal length varied from -2.29 cm to 3.12 cm when the applied voltage was increased from 0 V to 13.26 V.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Tam, "Smart electro-optical zoom lens," Opt. Lett. 17, 369-371 (1992).
    [CrossRef] [PubMed]
  2. J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
    [CrossRef]
  3. N. Sugiura and S. Morita, "Variable-focus liquid-filled optical lens," Appl. Opt. 32, 4181-4186 (1993).
    [CrossRef] [PubMed]
  4. J. Arai, H. Kawai, and F. Okano, "Microlens arrays for integral imaging system," Appl. Opt. 45, 9066-9078 (2006).
    [CrossRef] [PubMed]
  5. M. B. Chang, "Total internal reflection lens," Appl. Opt. 24, 1256-1259 (1985).
    [CrossRef] [PubMed]
  6. T. Shibaguchi and H. Funato, "Lead-lanthanum zirconate-titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes," Jpn. J. Appl. Phys. 31, 3196-3200 (1992).
    [CrossRef]
  7. I. C. Khoo and S. -T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific Publishing, Singapore, 1993).
  8. S. Sato, "Liquid crystal lens-cell with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
    [CrossRef]
  9. T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
    [CrossRef]
  10. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, "Focusing by electrical modulation of refraction in a liquid crystal cell," Appl. Opt. 23, 278-289 (1984).
    [CrossRef] [PubMed]
  11. N. A. Riza and M. C. Dejule, "Three-terminal adaptive liquid-crystal lens device," Opt. Lett. 19, 1013-1015 (1994).
    [CrossRef] [PubMed]
  12. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, "Liquid-crystal adaptive lenses with modal control," Opt. Lett. 23, 992-994 (1998).
    [CrossRef]
  13. T. Takahashi, Y. Mao, and S. Sato, "Wavefront Aberrations of a Liquid Crystal Lens with Focal Length Variable from Negative to Positive Values," Jpn. J. Appl. Phys. 46, 2926-2931 (2007).
    [CrossRef]
  14. Y. Mao, B. Wang, and S. Sato, "Liquid-crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
    [CrossRef]
  15. L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
    [CrossRef]
  16. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
    [CrossRef]
  17. H. W. Ren, Y. -H. Lin, and S. -T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
    [CrossRef]
  18. Y. J. Liu, X. W. Sun, and Q. Wang, "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288, 192-194 (2006).
    [CrossRef]
  19. Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
    [CrossRef]
  20. C. R. Forest, M. A. Saez, and I. W. Hunter, "Microforging technique for rapid, low-cost fabrication of lens array molds," Appl. Opt. 46, 8868-8873 (2007).
    [CrossRef]
  21. H. W. Ren, Y. -H. Fan, and S. -T. Wu, "Liquid-crystal microlens arrays using patterned polymer networks," Opt. Lett. 29, 1608-1610 (2004).
    [CrossRef] [PubMed]
  22. H. W Ren and S.-T. Wu, "Tunable electronic lens using a gradient polymer network liquid crystal," Appl. Phys. Lett. 82, 22-24 (2003).
    [CrossRef]
  23. V. V. Presnyakov and T. V. Galstian, "Electrically tunable polymer stabilized liquid-crystal lens," J. Appl. Phys. 97, 103101 (2005).
    [CrossRef]
  24. Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, "Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal," Opt. Express 14, 5634-5640 (2006).
    [CrossRef] [PubMed]
  25. X. Wang, T. H. Dai, and K. S. Xu, "Tunable reflective lens array based on liquid crystal on silicon," Opt. Express 13, 352-357 (2005).
    [CrossRef] [PubMed]
  26. H. W. Ren and S. -T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646 -2652(2008).
    [CrossRef] [PubMed]
  27. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
    [CrossRef] [PubMed]
  28. Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
    [CrossRef]

2008 (2)

2007 (4)

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

C. R. Forest, M. A. Saez, and I. W. Hunter, "Microforging technique for rapid, low-cost fabrication of lens array molds," Appl. Opt. 46, 8868-8873 (2007).
[CrossRef]

T. Takahashi, Y. Mao, and S. Sato, "Wavefront Aberrations of a Liquid Crystal Lens with Focal Length Variable from Negative to Positive Values," Jpn. J. Appl. Phys. 46, 2926-2931 (2007).
[CrossRef]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

2006 (4)

H. W. Ren, Y. -H. Lin, and S. -T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, and Q. Wang, "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288, 192-194 (2006).
[CrossRef]

J. Arai, H. Kawai, and F. Okano, "Microlens arrays for integral imaging system," Appl. Opt. 45, 9066-9078 (2006).
[CrossRef] [PubMed]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, "Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal," Opt. Express 14, 5634-5640 (2006).
[CrossRef] [PubMed]

2005 (2)

X. Wang, T. H. Dai, and K. S. Xu, "Tunable reflective lens array based on liquid crystal on silicon," Opt. Express 13, 352-357 (2005).
[CrossRef] [PubMed]

V. V. Presnyakov and T. V. Galstian, "Electrically tunable polymer stabilized liquid-crystal lens," J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

2004 (2)

2003 (2)

Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
[CrossRef]

H. W Ren and S.-T. Wu, "Tunable electronic lens using a gradient polymer network liquid crystal," Appl. Phys. Lett. 82, 22-24 (2003).
[CrossRef]

2000 (1)

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
[CrossRef]

1998 (1)

1996 (1)

J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
[CrossRef]

1994 (1)

1993 (1)

1992 (2)

T. Shibaguchi and H. Funato, "Lead-lanthanum zirconate-titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes," Jpn. J. Appl. Phys. 31, 3196-3200 (1992).
[CrossRef]

E. C. Tam, "Smart electro-optical zoom lens," Opt. Lett. 17, 369-371 (1992).
[CrossRef] [PubMed]

1991 (1)

T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
[CrossRef]

1985 (1)

1984 (1)

1979 (1)

S. Sato, "Liquid crystal lens-cell with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Arai, J.

Chang, M. B.

Choi, Y.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Cleverly, D. S.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Dai, T. H.

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
[CrossRef]

De Nicola, S.

Dejule, M. C.

Dickmann, S.

J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
[CrossRef]

Eschler, J.

J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
[CrossRef]

Fan, Y. -H.

Ferraro, P.

Finizio, A.

Forest, C. R.

C. R. Forest, M. A. Saez, and I. W. Hunter, "Microforging technique for rapid, low-cost fabrication of lens array molds," Appl. Opt. 46, 8868-8873 (2007).
[CrossRef]

Funato, H.

T. Shibaguchi and H. Funato, "Lead-lanthanum zirconate-titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes," Jpn. J. Appl. Phys. 31, 3196-3200 (1992).
[CrossRef]

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, "Electrically tunable polymer stabilized liquid-crystal lens," J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Grilli, S.

Guralnik, I. R.

Hu, B. W.

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Hunter, I. W.

C. R. Forest, M. A. Saez, and I. W. Hunter, "Microforging technique for rapid, low-cost fabrication of lens array molds," Appl. Opt. 46, 8868-8873 (2007).
[CrossRef]

Huo, J. M.

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Jiao, G. H.

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Kawai, H.

Kim, H.-R.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kim, J. -H.

Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Kim, J.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kornreich, P. G.

Kowel, S. T.

Lee, K.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Lee, S. -D.

Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Lee, Y.-M.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Li, T. H.

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Li, Y. L.

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Lin, Y. -H.

H. W. Ren, Y. -H. Lin, and S. -T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, and Q. Wang, "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288, 192-194 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, "Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal," Opt. Express 14, 5634-5640 (2006).
[CrossRef] [PubMed]

Loktev, M. Y.

Mao, Y.

T. Takahashi, Y. Mao, and S. Sato, "Wavefront Aberrations of a Liquid Crystal Lens with Focal Length Variable from Negative to Positive Values," Jpn. J. Appl. Phys. 46, 2926-2931 (2007).
[CrossRef]

Y. Mao, B. Wang, and S. Sato, "Liquid-crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

Masuda, S.

T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
[CrossRef]

Miccio, L.

Mlynski, D. A.

J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
[CrossRef]

Molsen, H.

J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
[CrossRef]

Morita, S.

Naumov, A. F.

Nose, T.

T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
[CrossRef]

Okano, F.

Park, J. -H.

Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, "Electrically tunable polymer stabilized liquid-crystal lens," J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Ren, H. W

H. W Ren and S.-T. Wu, "Tunable electronic lens using a gradient polymer network liquid crystal," Appl. Phys. Lett. 82, 22-24 (2003).
[CrossRef]

Ren, H. W.

Riza, N. A.

Saez, M. A.

C. R. Forest, M. A. Saez, and I. W. Hunter, "Microforging technique for rapid, low-cost fabrication of lens array molds," Appl. Opt. 46, 8868-8873 (2007).
[CrossRef]

Sato, S.

T. Takahashi, Y. Mao, and S. Sato, "Wavefront Aberrations of a Liquid Crystal Lens with Focal Length Variable from Negative to Positive Values," Jpn. J. Appl. Phys. 46, 2926-2931 (2007).
[CrossRef]

Y. Mao, B. Wang, and S. Sato, "Liquid-crystal lens with a focal length that is variable in a wide range," Appl. Opt. 43, 6407-6412 (2004).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
[CrossRef]

S. Sato, "Liquid crystal lens-cell with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Shibaguchi, T.

T. Shibaguchi and H. Funato, "Lead-lanthanum zirconate-titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes," Jpn. J. Appl. Phys. 31, 3196-3200 (1992).
[CrossRef]

Shum, P.

Sugiura, N.

Sun, X. W.

Y. J. Liu, X. W. Sun, and Q. Wang, "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288, 192-194 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, "Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal," Opt. Express 14, 5634-5640 (2006).
[CrossRef] [PubMed]

Takahashi, T.

T. Takahashi, Y. Mao, and S. Sato, "Wavefront Aberrations of a Liquid Crystal Lens with Focal Length Variable from Negative to Positive Values," Jpn. J. Appl. Phys. 46, 2926-2931 (2007).
[CrossRef]

Tam, E. C.

Vdovin, G.

Vespini, V.

Wang, B.

Wang, Q.

Y. J. Liu, X. W. Sun, and Q. Wang, "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288, 192-194 (2006).
[CrossRef]

Wang, X.

Wu, L. L.

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Wu, S. -T.

Wu, S.-T.

H. W Ren and S.-T. Wu, "Tunable electronic lens using a gradient polymer network liquid crystal," Appl. Phys. Lett. 82, 22-24 (2003).
[CrossRef]

Xu, K. S.

Yin, X. J.

Appl. Opt. (6)

Appl. Phys. Lett. (3)

H. W Ren and S.-T. Wu, "Tunable electronic lens using a gradient polymer network liquid crystal," Appl. Phys. Lett. 82, 22-24 (2003).
[CrossRef]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

H. W. Ren, Y. -H. Lin, and S. -T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006).
[CrossRef]

Ferroelectrics (1)

J. Eschler, S. Dickmann, D. A. Mlynski, and H. Molsen, "Fast adaptive lens based on deformed helix ferroelectric liquid crystal," Ferroelectrics 181, 21-28 (1996).
[CrossRef]

J. Appl. Phys. (1)

V. V. Presnyakov and T. V. Galstian, "Electrically tunable polymer stabilized liquid-crystal lens," J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

J. Cryst. Growth (1)

Y. J. Liu, X. W. Sun, and Q. Wang, "A focus-switchable lens made of polymer-liquid crystal composite," J. Cryst. Growth 288, 192-194 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (4)

S. Sato, "Liquid crystal lens-cell with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
[CrossRef]

T. Shibaguchi and H. Funato, "Lead-lanthanum zirconate-titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes," Jpn. J. Appl. Phys. 31, 3196-3200 (1992).
[CrossRef]

T. Takahashi, Y. Mao, and S. Sato, "Wavefront Aberrations of a Liquid Crystal Lens with Focal Length Variable from Negative to Positive Values," Jpn. J. Appl. Phys. 46, 2926-2931 (2007).
[CrossRef]

Opt. Commun. (1)

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. (1)

Y. Choi, J. -H. Park, J. -H. Kim, and S. -D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Optik (1)

Y. L. Li, T. H. Li, G. H. Jiao, B. W. Hu, J. M. Huo, and L. L. Wu, "Research on micro-optical lenses fabrication technology," Optik 118, 395-401 (2007).
[CrossRef]

Other (1)

I. C. Khoo and S. -T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific Publishing, Singapore, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the microlens array fabrication processes by printing (a), (b), and operation mechanism of the tunable LC microlens under an electric field (c), (d).

Fig. 2.
Fig. 2.

Experimental setup to measure the focusing property (a), and schematic diagram of negative (b) and positive (c) focusing, Ov and Or is the virtual and real focus respectively.

Fig. 3.
Fig. 3.

(a) The optical microscopic image of the bare NOA 65 microlens array. (b) Imaging formed by the microlens array in (a).

Fig. 4.
Fig. 4.

CCD images showing the focusing of the microlens array for polarized incident light parallel (a) and perpendicular (b) to LC alignment direction.

Fig. 5.
Fig. 5.

Interference fringe patterns of the LC microlens array with various applied voltages of (a) 0 Vrms, (b) 6.06 Vrms, and (c) 16.92 Vrms.

Fig. 6.
Fig. 6.

CCD images of focusing properties under different applied voltages for the negative (a-d) and the positive (e-h) cases, using the setup in Figs. 2(b) and (c) respectively.

Fig. 7.
Fig. 7.

Intensity profile of real (a) and virtual foci (b) at the focal plane with various applied voltages

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = h 2 + r 2 2 h ( n p n )

Metrics