Abstract

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate is reported. Both the optical parametric oscillation and the cascaded noncollinear second-order harmonic generation processes reach a high efficiency. A variety of possible self-doubling optical parametric oscillation processes indicate this hexagonally poled lithium tantalate has potential applications as a compact multi-wavelength light source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970).
    [CrossRef]
  2. J. M. Yarborough and E. O. Ammann, "Simultaneous Optical Parametric Oscillation, Second Harmonic Generation, and Difference Frequency Generation," Appl. Phys. Lett. 18, 145-147 (1971).
    [CrossRef]
  3. V. Petrov and F. Noack, "Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal," Opt. Lett. 20, 2171-2173 (1995).
    [CrossRef] [PubMed]
  4. T. Kartaloğlu, K. G. Köprülü, and O. Aytür, "Phase-matched self-doubling optical parametric oscillator," Opt. Lett. 22, 280-282 (1997).
    [CrossRef]
  5. K. G. Köprülü, T. Kartaloğlu, Y. Dikmelik, and O. Aytür, "Single-crystal sum-frequency-generating optical parametric oscillator," J. Opt. Soc. Am. B 16, 1546-1552 (1999).
    [CrossRef]
  6. E. C. Cheung, K. Koch, and G. T. Moore, "Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator," Opt. Lett. 19, 1967-1969 (1994).
    [CrossRef] [PubMed]
  7. R. J. Ellingson and C. L. Tang, "High-power, high-repetition-rate femtosecond pulses tunable in the visible," Opt. Lett. 18, 438-440 (1993).
    [CrossRef] [PubMed]
  8. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, "Femtosecond optical parametric oscillator based on periodically poled lithium niobate," J. Opt. Soc. Am. B 15, 694-701 (1998).
    [CrossRef]
  9. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Rühle, and H. Giessen, "Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator," Opt. Lett. 26, 2005-2007 (2001).
    [CrossRef]
  10. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, "2.5-W, continuous-wave, 629-nm solid-state laser source," Opt. Lett. 23, 207-209 (1998).
    [CrossRef]
  11. K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
    [CrossRef]
  12. Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
    [CrossRef]
  13. T. Kartaloğlu, Z. G. Figen, and O. Aytür, "Simultaneous phase matching of optical parametric oscillation and second harmonic generation in aperiodically poled lithium niobate," J. Opt. Soc. Am. B 20, 343-350 (2003)
    [CrossRef]
  14. S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997).
    [CrossRef]
  15. H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
    [CrossRef]
  16. V. Berger, "Nonlinear Photonic Crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
    [CrossRef]
  17. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
    [CrossRef] [PubMed]
  18. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, "Cascaded third-harmonic generation of ultrashort optical pulses in two-dimensional quasi-phase-matching gratings," J. Opt. Soc. Am. B 24, 2394-2405 (2007).
    [CrossRef]
  19. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
    [CrossRef]
  20. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, "Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light source generation based on a hexagonally poled lithium tantalate," Opt. Lett. 33, 2791-2793 (2008).
    [CrossRef] [PubMed]

2008

2007

2006

Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

2004

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

2003

2002

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

2001

2000

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

1999

1998

1997

S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997).
[CrossRef]

T. Kartaloğlu, K. G. Köprülü, and O. Aytür, "Phase-matched self-doubling optical parametric oscillator," Opt. Lett. 22, 280-282 (1997).
[CrossRef]

1995

V. Petrov and F. Noack, "Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal," Opt. Lett. 20, 2171-2173 (1995).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

1994

1993

1971

J. M. Yarborough and E. O. Ammann, "Simultaneous Optical Parametric Oscillation, Second Harmonic Generation, and Difference Frequency Generation," Appl. Phys. Lett. 18, 145-147 (1971).
[CrossRef]

1970

R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Alexander, J. I.

Ammann, E. O.

J. M. Yarborough and E. O. Ammann, "Simultaneous Optical Parametric Oscillation, Second Harmonic Generation, and Difference Frequency Generation," Appl. Phys. Lett. 18, 145-147 (1971).
[CrossRef]

Andrews, R. A.

R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Arie, A.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

Ashihara, S.

Aytür, O.

Berger, V.

V. Berger, "Nonlinear Photonic Crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

Bosenberg, W. R.

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Cheung, E. C.

Dikmelik, Y.

Ebrahimzadeh, M.

Ellingson, R. J.

Fan, Y. X.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

Figen, Z. G.

Fujioka, N.

Gao, Z. D.

Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Giessen, H.

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Hebling, J.

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Jundt, D. H.

Kartaloglu, T.

Kashi, K. F.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

Koch, K.

Köprülü, K. G.

Kuhl, J.

Kung, A. H.

Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

Kuroda, K.

Leng, H. Y.

Li, H. X.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

Lu, P.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

McGowan, C.

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Moore, G. T.

Myers, L. E.

Noack, F.

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Ono, H.

Penman, Z. E.

Petrov, V.

Qin, Y. Q.

Rabin, H.

R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Reid, D. T.

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Rosenman, G.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Rühle, W. W.

Shimura, T.

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Sibbett, W.

Tang, C. L.

R. J. Ellingson and C. L. Tang, "High-power, high-repetition-rate femtosecond pulses tunable in the visible," Opt. Lett. 18, 438-440 (1993).
[CrossRef] [PubMed]

R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Tu, S.Y.

Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

Urenski, P.

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

Wallace, R. W.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Wang, H. T.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

Wang, J. F.

Xie, Z. D.

Xu, P.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, "Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light source generation based on a hexagonally poled lithium tantalate," Opt. Lett. 33, 2791-2793 (2008).
[CrossRef] [PubMed]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough and E. O. Ammann, "Simultaneous Optical Parametric Oscillation, Second Harmonic Generation, and Difference Frequency Generation," Appl. Phys. Lett. 18, 145-147 (1971).
[CrossRef]

Yu, X. Q.

Zhang, X. P.

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Zhao, J. S.

Zhu, S. N.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, "Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light source generation based on a hexagonally poled lithium tantalate," Opt. Lett. 33, 2791-2793 (2008).
[CrossRef] [PubMed]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Zhu, S.N.

Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

Appl. Phys. Lett.

Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

J. M. Yarborough and E. O. Ammann, "Simultaneous Optical Parametric Oscillation, Second Harmonic Generation, and Difference Frequency Generation," Appl. Phys. Lett. 18, 145-147 (1971).
[CrossRef]

J. Appl. Phys.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

V. Berger, "Nonlinear Photonic Crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002).
[CrossRef]

R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970).
[CrossRef]

Science

S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The micrograph of the hexagonally poled lithium tantalate (a) and its reciprocal space (b).

Fig. 2.
Fig. 2.

(a) Temperature dependant signal and idler wavelengths which are generated from the parametric down conversion process participant by RLV 0,1 (b) Multiple QPM-SHG processes in the HexPLT

Fig. 3.
Fig. 3.

The measured signal power versus the pump power. The inset is the schematic optical alignment of this OPO cavity.

Fig. 4.
Fig. 4.

The signal power and the idler harmonics power versus temperature.

Metrics