Abstract

We analyze the diffraction characteristics of dielectric gratings that feature a high index grating layer, and devise, through rigorous numerical calculations, large bandwidth, highly efficient, high dispersion dielectric gratings in reflection, transmission, and immersed transmission geometry. A dielectric TIR grating is suggested, whose −1dB spectral bandwidth is doubled as compared to its fused silica equivalent. The short wavelength diffraction efficiency is additionally improved by allowing for slanted lamella. The grating surpasses a blazed gold grating over the full octave. An immersed transmission grating is devised, whose −1dB bandwidth is tripled as compared to its fused silica equivalent, and that surpasses an equivalent classical transmission grating over nearly the full octave. A transmission grating in the classical scattering geometry is suggested, that features a buried high index layer. This grating provides effectively 100% diffraction efficiency at its design wavelegth, and surpasses an equivalent fused silica grating over the full octave.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency, high-dispersion diffraction gratings based on total internal reflection

John R. Marciante and Daniel H. Raguin
Opt. Lett. 29(6) 542-544 (2004)

High-efficiency dielectric reflection gratings: design, fabrication, and analysis

Karl Hehl, Joerg Bischoff, Ullrich Mohaupt, Martin Palme, Bernd Schnabel, Lutz Wenke, Ragnar Bödefeld, Wolfgang Theobald, Eberhard Welsch, Roland Sauerbrey, and Hartmut Heyer
Appl. Opt. 38(30) 6257-6271 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,“ Opt. Express 10, 628–638 (2002).
    [PubMed]
  2. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,“ Appl. Opt. 44, 3143–3152 (2005).
    [Crossref] [PubMed]
  3. T. Clausnitzer, J. Limpert, K. Zollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupe, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,“ Appl. Opt. 42, 6934 (2003).
    [Crossref] [PubMed]
  4. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,“ Opt. Lett. 22, 142–144 (1997).
    [Crossref] [PubMed]
  5. N. Tamura, G. Murray, R. Sharples, D. Robertson, and J. Allington-Smith, “Measurement of throughput variation across a large format volume-phase holographic grating,“ Opt. Express 13, 4125–4133 (2005).
    [Crossref] [PubMed]
  6. T. K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, “Chirped-pulse amplification of 85-fs pulses at 250kHz with 3rd order dispersion compensation by use of holographic transmission gratings,“ Opt. Lett. 19, 1550–1552 (1994).
    [Crossref] [PubMed]
  7. I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency,“ Pub. Astron. Soc. Pac. 116, 403 (2003).
    [Crossref]
  8. N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
    [Crossref]
  9. James Gregory (1638-1675) used a bird feather to create diffraction, seeH W Turnbull, James Gregory (1638-1675), in The James Gregory Tercentenary Memorial Volume (London, 1939), 5–11.
  10. J. R. Marciante and D. H. Raguin, “High-efficiency, high-dispersion diffraction gratings based on total internal reflection,“ Opt. Lett. 29, 542 (2004).
    [Crossref] [PubMed]
  11. S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
    [Crossref]
  12. R. Livingston and R. Krchnavek, “Grazing angle planar diffraction grating for photonic wavelength demultiplexing,“ Electronic Components and Technology Conference, 1996. Proceedings., 46th pp. 958–962 (1996).
  13. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,“ J. Opt. Soc. Am. A 12, 1077 (1995).
    [Crossref]
  14. http://mrcwa.sourceforge.net/.
  15. G. van Rossum, “Python Programming Language,“ http://www.python.org/.
  16. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
    [Crossref]
  17. T. Clausnitzer, T. Kampfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,“ Opt. Express 13, 10448– 10456 (2005).
    [Crossref] [PubMed]
  18. T. Clausnitzer, T. Kampfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Opt. Express 16, 5577 (2008).
    [Crossref] [PubMed]
  19. D. R. Lide, CRC handbook of chemistry and physics (CRC Press Boca Raton, FL, 1995)
  20. R. Petit, Electromagnetic theory of gratings, vol. 22 of Topics in Current Physics (Springer Verlag, Berlin, 1980).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin1988)
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,“ Bell. Syst. Tech. J. 49, 2909 (1969).
  23. E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).
  24. J. Nishii, K. Kintaka, and T. Nakazawa, “High-Efficiency Transmission Gratings Buried in a Fused-SiO2 Glass Plate,“ Appl. Opt. 43, 1327–1330 (2004).
    [Crossref] [PubMed]
  25. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,“ Opt. Lett. 31, 3363 (2006).
    [Crossref] [PubMed]

2008 (1)

2007 (1)

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

2006 (1)

2005 (3)

2004 (2)

2003 (2)

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency,“ Pub. Astron. Soc. Pac. 116, 403 (2003).
[Crossref]

T. Clausnitzer, J. Limpert, K. Zollner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupe, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,“ Appl. Opt. 42, 6934 (2003).
[Crossref] [PubMed]

2002 (2)

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,“ Opt. Express 10, 628–638 (2002).
[PubMed]

1997 (1)

1995 (1)

1994 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,“ Bell. Syst. Tech. J. 49, 2909 (1969).

Allington-Smith, J.

Anderson, E.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Arns, J. A.

Bai, Z.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Baldry, I. K.

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency,“ Pub. Astron. Soc. Pac. 116, 403 (2003).
[Crossref]

Bischof, C.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Blackford, S.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Bland-Hawthorn, J.

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency,“ Pub. Astron. Soc. Pac. 116, 403 (2003).
[Crossref]

Bouchut, P.

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Clausnitzer, T.

Colburn, W. S.

Croz, J. D.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Demmel, J.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Dongarra, J.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Durfee, C.

Ebizuka, N.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Fan, Z.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Fuchs, H.

Fuchs, H.-J.

Gaborit, G.

Gaudiosi, D. M.

Gaylord, T. K.

Gibson, E. A.

Grann, E. B.

Greenbaum, A.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Hammarling, S.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Huang, J.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Huff, R.

Iye, M.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Jimenez, R.

Jin, Y.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Journot, E.

Jupe, M.

Kampfe, T.

Kane, S.

Kapteyn, H. C.

Kawabata, K.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Kawabata, M.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Kintaka, K.

Kley, E.

Kley, E.-B.

Kodate, K.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,“ Bell. Syst. Tech. J. 49, 2909 (1969).

Krchnavek, R.

R. Livingston and R. Krchnavek, “Grazing angle planar diffraction grating for photonic wavelength demultiplexing,“ Electronic Components and Technology Conference, 1996. Proceedings., 46th pp. 958–962 (1996).

Lide, D. R.

D. R. Lide, CRC handbook of chemistry and physics (CRC Press Boca Raton, FL, 1995)

Limpert, J.

Liu, S.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Livingston, R.

R. Livingston and R. Krchnavek, “Grazing angle planar diffraction grating for photonic wavelength demultiplexing,“ Electronic Components and Technology Conference, 1996. Proceedings., 46th pp. 958–962 (1996).

Ma, J.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Marciante, J. R.

McKenney, A.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Moharam, M. G.

Murray, G.

Nakazawa, T.

Néauport, J.

Nguyen, H. T.

Nishii, J.

Norris, T. B.

Oka, K.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).

Parriaux, O.

Perry, M. D.

Peschel, U.

Petit, R.

R. Petit, Electromagnetic theory of gratings, vol. 22 of Topics in Current Physics (Springer Verlag, Berlin, 1980).

Pommet, D. A.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin1988)

Raguin, D. H.

Rhee, T. K.

Ristau, D.

Robertson, D.

Robertson, J. G.

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency,“ Pub. Astron. Soc. Pac. 116, 403 (2003).
[Crossref]

Schreiber, T.

Shao, J.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Sharples, R.

Shen, Z.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Shimizu, K.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Shore, B. W.

Sorensen, D.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

Sosnowski, T. S.

Squier, J.

Tamura, N.

Teranishi, T.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Tishchenko, A.

Tünnermann, A.

Turnbull, H W

James Gregory (1638-1675) used a bird feather to create diffraction, seeH W Turnbull, James Gregory (1638-1675), in The James Gregory Tercentenary Memorial Volume (London, 1939), 5–11.

van Rossum, G.

G. van Rossum, “Python Programming Language,“ http://www.python.org/.

Watanabe, M.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Wei, C.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Yamada, A.

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Zellmer, H.

Zollner, K.

Zöllner, K.

Appl. Opt. (3)

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,“ Bell. Syst. Tech. J. 49, 2909 (1969).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,“ Opt. Commun. 273, 290 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Proc. SPIE (1)

N. Ebizuka, K. Oka, A. Yamada, M. Watanabe, K. Shimizu, K. Kodate, M. Kawabata, T. Teranishi, K. Kawabata, and M. Iye, “Development of volume phase holographic(VPH) grism for visible to near infrared instruments of 8. 2-m Subaru Telescope,“ Proc. SPIE 4842, 319–328 (2002).
[Crossref]

Pub. Astron. Soc. Pac. (1)

I. K. Baldry, J. Bland-Hawthorn, and J. G. Robertson, “Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency,“ Pub. Astron. Soc. Pac. 116, 403 (2003).
[Crossref]

Other (9)

James Gregory (1638-1675) used a bird feather to create diffraction, seeH W Turnbull, James Gregory (1638-1675), in The James Gregory Tercentenary Memorial Volume (London, 1939), 5–11.

D. R. Lide, CRC handbook of chemistry and physics (CRC Press Boca Raton, FL, 1995)

R. Petit, Electromagnetic theory of gratings, vol. 22 of Topics in Current Physics (Springer Verlag, Berlin, 1980).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin1988)

http://mrcwa.sourceforge.net/.

G. van Rossum, “Python Programming Language,“ http://www.python.org/.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (SIAM, Philadelphia, 1999). http://www.netlib.org/lapack/lug/.
[Crossref]

R. Livingston and R. Krchnavek, “Grazing angle planar diffraction grating for photonic wavelength demultiplexing,“ Electronic Components and Technology Conference, 1996. Proceedings., 46th pp. 958–962 (1996).

E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).

Supplementary Material (3)

» Media 1: AVI (1737 KB)     
» Media 2: AVI (1555 KB)     
» Media 3: AVI (1490 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a)–(c) Schematics of the investigated types of dielectric gratings, (a) TIR grating, (b) immersed grating, (c) classical transmission grating. (d) Scattering geometry of an optical grating.

Fig. 2.
Fig. 2.

Diffraction efficiency of dielectric TIR gratings as a function of the groove width and depth. (a) silica TIR grating. (b) TIR grating based on a high index material (n=2.4). (c) TIR grating based on a high index material featuring slanted lamella (α = 40°). (d) silica TIR grating featuring slanted lamella (α = 30°). The upper panels show the diffraction efficiency at the design wavelength λ 0 = 1064nm. The middle panels show the mean diffraction efficiency, averaged over the usable octave λc /2 < λ < λc (see text). The lower panel shows the −1dB spectral bandwidth. The open white symbols mark optimal choices of the parameters w and d for each type of grating, and represent those values, for which the spectral characteristics is plotted in Fig. 3. All results shown correspond to s-polarized light. (c) and (d) are linked to suplemental movies Media 1 and Media 2.

Fig. 3.
Fig. 3.

Spectral characteristics of dielectric TIR gratings (s-polarized light), as compared to a best blazed gold grating with blaze angle 33° (p-polarized light). The blue line shows the result for a silica TIR grating with groove width 0.35T and depth 1.1T, corresponding to maximum peak efficiency and spectral bandwidth (white circle in Fig. 2(a)). The green line shows the spectral characteristics of a dielectric TIR grating featuring a high index material (n = 2.4) in the grating region (w = 0.6T, d = 0.21T, as marked by the white square in Fig. 2(b)). The black line shows the spectral characteristics of a dielectric TIR grating with a high index material and slanted lamella (α = 40°), groove width 0.7T, depth 0.5T, corresponding to an optimal choice for large mean diffraction efficiency and simultaneously a comparably smooth spectrum, (white diamond in Fig. 2(c)). The cyan line shows the result for a silica TIR grating with slanted lamella (α = 30°), groove width 0.3T, depth 1.6T, optimized for high short wavelengths efficiency.

Fig. 4.
Fig. 4.

(a) diffraction efficiency for an immersed dielectric grating, illuminated under a large incident angle (ϑ 0 = 60°). The upper panels show the reflected orders, the lower panels show the transmitted orders. The left and right panels show the −1 st and 0 th order, respectively. (b) same as in (a), for a grating featuring a high index material (n = 2.4) in the grating region.

Fig. 5.
Fig. 5.

Spectral characteristics for an immersed dielectric grating featuring a high index material in the grating region (blue lines), as compared to its fused silica equivalent (red line). The solid blue line represents a design that is optimized for highest peak efficiency, corresponding to w = 0.43T and d = 1.3T, as shown by the white square in Fig. 4(b)). The dashed blue line represents a design that is optimized for maximum bandwidth, corresponding to w = 0.6T and d = 0.7T, as shown by the white diamond in Fig. 4(b).

Fig. 6.
Fig. 6.

(a) diffraction efficiency of a classical dielectric transmission grating. (b) diffraction efficiency of a double-layer grating featuring a bured high index layer, with thickness ratio r = 0.5. The circle and diamond mark those values of the groove width and depth, for which the spectral characteristics are evaluated in Fig. 7. (b) is linked to supplemental movie Media 3.

Fig. 7.
Fig. 7.

Spectral characteristics of a dielectric transmission grating featuring a buried high index layer (blue line), as compared to a classical transmission grating (red line). The groove width an depth are w = 0.68T, d = 1.1T, respectively w = 0.57T, d = 2.07T, as marked by the diamond and circle in Fig. 6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin ϑ m S = sin ϑ 0 S + n S T ,
D = ϑ m R λ = m T n R cos ϑ m R .
q m > n T for all m .
T = ( 2 n R sin ϑ 0 R ) .
D = ( 2 / λ ) tan ϑ 0 .
Δ λ λ = T d cos ϑ 0 .

Metrics