Abstract

We demonstrate in vivo velocity-resolved, volumetric bidirectional blood flow imaging in human retina using single-pass flow imaging spectral domain optical coherence tomography (SPFI-SDOCT). This technique uses previously described methods for separating moving and non-moving scatterers within a depth by using a modified Hilbert transform. Additionally, a moving spatial frequency window is applied, creating a stack of depth-resolved images of moving scatterers, each representing a finite velocity range. The resulting velocity reconstruction is validated with and strongly correlated to velocities measured with conventional Doppler OCT in flow phantoms. In vivo velocity-resolved flow mapping is acquired in healthy human retina and demonstrate the measurement of vessel size, peak velocity, and total foveal blood flow with OCT.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-76 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367
    [CrossRef] [PubMed]
  2. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-Resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-22 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404
    [CrossRef] [PubMed]
  3. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-38 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1627
    [CrossRef] [PubMed]
  4. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
    [CrossRef]
  5. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007).
    [CrossRef]
  6. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
    [CrossRef]
  7. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-21 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3116
    [CrossRef] [PubMed]
  8. B. R. White, M. C. Pierce, N. A. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. De Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-7 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490
    [CrossRef] [PubMed]
  9. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-97 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4083
    [CrossRef] [PubMed]
  10. L. An, and R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt Express 16, 11438-52 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438
    [CrossRef] [PubMed]
  11. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-794
    [CrossRef] [PubMed]
  12. Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-61 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-16-12350
    [CrossRef] [PubMed]
  13. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-22 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-408
    [CrossRef] [PubMed]
  14. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time Domain Optical Coherence Tomography," Opt. Express 16, 6008-25 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008
    [CrossRef] [PubMed]
  15. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt Lett 32, 3453-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453
    [CrossRef] [PubMed]
  16. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-5 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-8-1861
    [CrossRef] [PubMed]
  17. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 0541031-3 (2007).
  18. B. Baumann, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-87 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13375
    [CrossRef] [PubMed]
  19. L. An, and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt Letters 32, 3423-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3423
    [CrossRef]
  20. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-mu m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-20 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8406
    [CrossRef] [PubMed]
  21. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-96 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1487
    [CrossRef] [PubMed]
  22. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-8 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-20-4822
    [CrossRef] [PubMed]
  23. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-9 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-2-147
    [CrossRef] [PubMed]
  24. J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
    [PubMed]
  25. J. M. Rubin, "Power Doppler," Eur. Radiol. 9, S318-22 (1999)
    [CrossRef] [PubMed]
  26. J. M. Rubin, and R. S. Adler, "Power Doppler expands standard color capability," Diagn. Imaging 15, 66-9 (1993).
    [PubMed]
  27. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).
  28. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, "Cellular-Automata Method for Phase Unwrapping," J. Opt. Soc. Am. A 4, 267-80 (1987). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-4-1-267
    [CrossRef]
  29. R. L. Engerman, "Development of the macular circulation," Invest. Ophthalmol. 15, 835-40 (1976).
  30. P. Bagchi, "Mesoscale simulation of blood flow in small vessels," Biophysical J. 92, 1858-77 (2007)
    [CrossRef]
  31. J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).
  32. M. Sharan, and A. S. Popel, "A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall," Biorheology 38, 415-28 (2001).

2008

2007

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 0541031-3 (2007).

B. Baumann, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-87 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13375
[CrossRef] [PubMed]

L. An, and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt Letters 32, 3423-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3423
[CrossRef]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt Lett 32, 3453-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-22 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-408
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-38 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1627
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007).
[CrossRef]

P. Bagchi, "Mesoscale simulation of blood flow in small vessels," Biophysical J. 92, 1858-77 (2007)
[CrossRef]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-97 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4083
[CrossRef] [PubMed]

2006

2005

2004

2003

2001

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

M. Sharan, and A. S. Popel, "A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall," Biorheology 38, 415-28 (2001).

1999

J. M. Rubin, "Power Doppler," Eur. Radiol. 9, S318-22 (1999)
[CrossRef] [PubMed]

1994

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

1993

J. M. Rubin, and R. S. Adler, "Power Doppler expands standard color capability," Diagn. Imaging 15, 66-9 (1993).
[PubMed]

1987

1985

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).

1976

R. L. Engerman, "Development of the macular circulation," Invest. Ophthalmol. 15, 835-40 (1976).

Adler, R. S.

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

J. M. Rubin, and R. S. Adler, "Power Doppler expands standard color capability," Diagn. Imaging 15, 66-9 (1993).
[PubMed]

An, L.

L. An, and R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt Express 16, 11438-52 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438
[CrossRef] [PubMed]

L. An, and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt Letters 32, 3423-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3423
[CrossRef]

Aoki, G.

Bachman, M.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

Bachmann, A. H.

Bagchi, P.

P. Bagchi, "Mesoscale simulation of blood flow in small vessels," Biophysical J. 92, 1858-77 (2007)
[CrossRef]

Bajraszewski, T.

Baumann, B.

Bishop, J. J.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

Blatter, C.

Bouma, B. E.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007).
[CrossRef]

Bree, R. L.

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

Bude, R. O.

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

Cable, A. E.

Carson, P. L.

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

Cense, B.

Chen, T. C.

Chen, Z.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

Chen, Z. P.

Davis, A. M.

de Boer, J. F.

Drexler, W.

Duker, J. S.

Endo, T.

Engerman, R. L.

R. L. Engerman, "Development of the macular circulation," Invest. Ophthalmol. 15, 835-40 (1976).

Fabritius, T.

Fercher, A. F.

Fujimoto, J. G.

Ghiglia, D. C.

Gordon, M. L.

Gotzinger, E.

Gruber, A.

Grunwald, J. E.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).

Guo, S.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

Hanson, S. R.

Hitzenberger, C. K.

Huang, D.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

Hurst, S.

Intaglietta, M.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

Itoh, M.

Izatt, J. A.

Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-61 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-16-12350
[CrossRef] [PubMed]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007).
[CrossRef]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

Jacques, S. L.

Jiang, J. Y.

Johnson, P. C.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

Ko, T. H.

Kowalczyk, A.

Lasser, T.

Leitgeb, R. A.

Li, G. P.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

Liu, G.

Lo, S.

Ma, Z.

Makita, S.

Mariampillai, A.

Mastin, G. A.

Michaely, R.

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt Lett 32, 3453-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453
[CrossRef] [PubMed]

Mok, A.

Munce, N. R.

Nance, P. R.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

Nassif, N. A.

Nelson, J. S.

Park, B. H.

Pekar, J.

Petrig, B. L.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).

Pierce, M. C.

Pircher, M.

Popel, A. S.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

M. Sharan, and A. S. Popel, "A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall," Biorheology 38, 415-28 (2001).

Qi, B.

Randall, C.

Riva, C. E.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).

Romero, L. A.

Rubin, J. M.

J. M. Rubin, "Power Doppler," Eur. Radiol. 9, S318-22 (1999)
[CrossRef] [PubMed]

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

J. M. Rubin, and R. S. Adler, "Power Doppler expands standard color capability," Diagn. Imaging 15, 66-9 (1993).
[PubMed]

Schmetterer, L.

Sekhar, S. C.

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt Lett 32, 3453-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453
[CrossRef] [PubMed]

Seng-Yue, E.

Sharan, M.

M. Sharan, and A. S. Popel, "A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall," Biorheology 38, 415-28 (2001).

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).

Srinivasan, V. J.

Standish, B. A.

Szkulmowska, A.

Szkulmowski, M.

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

Tao, Y. K.

Tearney, G. J.

Villiger, M. L.

Vitkin, I. A.

Wang, L.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

Wang, R. K.

L. An, and R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt Express 16, 11438-52 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-97 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4083
[CrossRef] [PubMed]

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 0541031-3 (2007).

L. An, and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt Letters 32, 3423-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3423
[CrossRef]

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

White, B. R.

Wilson, B. C.

Wojtkowski, M.

Yang, V. X. D.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zawadzki, R. J.

Zhang, J.

Zhao, M.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007).
[CrossRef]

Am. J. Physiol.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).

Appl. Opt.

Appl. Phys. Lett.

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 0541031-3 (2007).

Biophysical J.

P. Bagchi, "Mesoscale simulation of blood flow in small vessels," Biophysical J. 92, 1858-77 (2007)
[CrossRef]

Biorheology

M. Sharan, and A. S. Popel, "A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall," Biorheology 38, 415-28 (2001).

Diagn. Imaging

J. M. Rubin, and R. S. Adler, "Power Doppler expands standard color capability," Diagn. Imaging 15, 66-9 (1993).
[PubMed]

Eur. Radiol.

J. M. Rubin, "Power Doppler," Eur. Radiol. 9, S318-22 (1999)
[CrossRef] [PubMed]

Invest. Ophthalmol.

R. L. Engerman, "Development of the macular circulation," Invest. Ophthalmol. 15, 835-40 (1976).

J. Biomed. Opt.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007).
[CrossRef]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Opt Express

L. An, and R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt Express 16, 11438-52 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438
[CrossRef] [PubMed]

Opt Lett

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt Lett 32, 3453-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453
[CrossRef] [PubMed]

Opt Letters

L. An, and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt Letters 32, 3423-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3423
[CrossRef]

Opt. Commun.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004).
[CrossRef]

Opt. Express

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-21 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3116
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. A. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. De Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-7 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-97 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4083
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-794
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-61 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-16-12350
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-22 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-408
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time Domain Optical Coherence Tomography," Opt. Express 16, 6008-25 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-mu m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-20 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8406
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-96 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1487
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-8 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-20-4822
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-87 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13375
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-76 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-Resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-22 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-38 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1627
[CrossRef] [PubMed]

Opt. Lett.

OVS

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).

Radiology

J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Flow chart of velocity-resolved SPFI-SDOCT signal processing. (a) Lateral Fourier transform of raw SDOCT spectral interferogram B-scan yields (b) spatial frequency of stationary scatterers centered around DC, and spatial frequency of moving scatterers shifted by their respective Doppler frequencies. (c) Applying a frequency-shifted Heaviside step function, spatial frequency windowing, and inverse Fourier transforming each frequency range recreates (d) the analytic interferometric signal. (e) Spectral inverse Fourier transform of the analytic interferometric signal maps depth-solved reflectivities of moving scatterers for each corresponding velocity range into a datacube for each B-scan. Bidirectional flow is mapped onto opposite image half-planes. Summing the datacube across all velocity ranges creates velocity- and depth-resolved B-scans.

Fig. 2.
Fig. 2.

Velocity-resolved SPFI-SDOCT retinal system. The sample arm is a modified slit lamp equipped with scanning galvanometers and relay optics for convenient patient retinal imaging. SPFI windowing and velocity-map reconstruction were calculated in post-processing

Fig. 3.
Fig. 3.

Validation of SPFI measured flow velocities. (a) Two micro-capillaries were connected and oriented such that 1% liposyn flowed in opposite directions in a B-scan cross-section. (b),(c) Velocity profiles measured using DOCT and fit to laminar flow curves. Data was acquired with 1000 A-scans/frame with 4 sequential A-scans for each lateral position with 50µs integration time. (d),(e) Velocity profiles measured using SPFI and fit to laminar flow curves. Data was acquired with 2500 A-scans/frame with 50µs integration time. (f),(g) Flow measured using both Doppler and SPFI were compared for both negative and positive flow, solid line represents theoretical flow rate.

Fig. 4.
Fig. 4.

10×10mm volume of in vivo human retina. (a)–(e) 2×2mm volumes sampled with 1024×2500×100pix at 100µs integration time (25s total imaging time) were acquired at several locations across the macula, (a) (View 1), (b) (View 2), and (d) (View 4), including landmarks such as (c) fovea (View 3) and (e) optic nerve (View 5). Volumes were processed using SPFI, and structure, vessels, and representative B-scans (across dotted lines) with flow overlaid are shown. Detectable vessel diameters ranged from 14µm (fovea) to 120µm (optic nerve).

Fig. 5.
Fig. 5.

Velocity-resolved 2×2mm volumetric flow map of in vivo human fovea. (a) Fovea vessel map with vessels and flow direction resolved using SPFI. Arrows denote arteries and veins, and dots represent locations where velocity profiles were measured. (b) Representative B-scan depth-slice across the foveal volume (dotted line) with velocity-resolved vessels overlaid onto structural data. Arteries (red) and veins (blue) are labeled for clarity. (c)–(i) Velocity profiles of vessels 11–17, respectively, are fit to laminar flow to determine peak velocities. Individual vessel diameters are measured at the zero-velocity crossings of their respective velocity profiles.

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Tables (2)

Tables Icon

Table 1. Size, velocity, and flow measurements across a 2×2mm volumetric flow map of in vivo human fovea calculated using SPFI. Arteries and veins (*) are numbered according to those identified in Fig. 5(a). Flow was calculated using vessel sizes and peak velocities measured using the parabolic fits of velocity profiles.

Tables Icon

Table 2. Retinal flow statistics in a 2×2mm volumetric flow map of in vivo human fovea calculated using SPFI-SDOCT.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F T x u [ I [ k , x ] ] = R [ k , u ] + R ¯ [ k , u ] + V ± [ k , u + f D , ± ] + V ± ¯ [ k , u f D , ± ] .
F T x u [ I [ k , x ] ] H [ u f T ] = α ( V + [ k , u + f D , + ] + V ¯ [ k , u f D , ] )
d v = L λ 0 2 n D τ w o cos θ D
Δ v = L λ 0 W [ u ] n D τ cos θ D .
d v = 4 ln 2 L λ 0 π n D τ w o cos θ D .

Metrics