Abstract

Recent substantial developments in light source and detector technology have initiated a paradigm shift in retinal optical coherence tomography (OCT) performance. Broad bandwidth light sources in the 800 nm and 1060 nm wavelength region enable axial OCT resolutions of 2–3 µm and 5–7 µm, respectively. Novel high speed silicon based CMOS cameras at 800 nm and InGaAs based CCD cameras in combination with frequency domain OCT technology enable data acquisition speeds of up to 47,000 A-scans/s at 1060 nm and up to 312,500 A-scans/s at 800 nm. Combining ultrahigh axial resolution, ultrahigh speed OCT at 800 nm with pancorrected adaptive optics allows volumetric in vivo cellular resolution retinal imaging. Commercially available three-dimensional (3D) retinal OCT at 800 nm (20,000 A-scans/s, 6 µm axial resolution) is compared to ultrahigh speed 3D retinal imaging at 800 nm (160,000 A-scans/s, 2–3 µm axial resolution), high speed 3D choroidal imaging at 1060 nm (47,000 A-scan/second, 6–7 µm axial resolution) and cellular resolution retinal imaging at 800 nm using adaptive optics OCT at 160,000 A-scans/second with isotropic resolution of ~2 µm. Analysis of the performance of these four imaging modalities applied in normal and pathologic eyes focusing on motion artifact free volumetric retinal imaging and revealing novel, complementary morphological information due to enhanced resolution, speed and penetration is presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
    [CrossRef] [PubMed]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
    [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
    [PubMed]
  4. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular disease (Slack Inc, Thorofare, New Jersey, 2004).
  5. W. Drexler, and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Prog Retin Eye Res 27,45-88 (2008).
    [CrossRef]
  6. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3,219-229 (1998).
    [CrossRef] [PubMed]
  7. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23,147-149 (1998).
    [CrossRef]
  8. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11,2753-2761 (2003).
    [CrossRef] [PubMed]
  9. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
    [CrossRef]
  10. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
    [CrossRef] [PubMed]
  11. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11,2183-2189 (2003).
    [CrossRef] [PubMed]
  12. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003).
    [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22,340-342 (1997).
    [CrossRef] [PubMed]
  14. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22,1704-1706 (1997).
    [CrossRef]
  15. S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003).
    [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14,3225-3237 (2006).
    [CrossRef] [PubMed]
  17. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006).
    [CrossRef] [PubMed]
  18. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
    [CrossRef] [PubMed]
  19. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
    [CrossRef] [PubMed]
  20. H. C. Howland, and B. Howland, "A subjective method for the measurement of monochromatic aberrations of the eye," J. Opt. Soc. Am. 67,1508-1518 (1977).
    [CrossRef] [PubMed]
  21. J. Z. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14,2884-2892 (1997).
    [CrossRef]
  22. A. Roorda, and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397,520-522 (1999).
    [CrossRef] [PubMed]
  23. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10,405-412 (2002).
    [PubMed]
  24. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14,7144-7158 (2006).
    [CrossRef] [PubMed]
  25. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004).
    [CrossRef] [PubMed]
  26. Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13,4792-4811 (2005).
    [CrossRef] [PubMed]
  27. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006).
    [CrossRef] [PubMed]
  28. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13,8532-8546 (2005).
    [CrossRef] [PubMed]
  29. E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
    [CrossRef] [PubMed]
  30. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
    [CrossRef] [PubMed]
  31. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
    [CrossRef] [PubMed]
  32. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
    [CrossRef] [PubMed]
  33. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
    [CrossRef] [PubMed]
  34. R. Huber, D. Adler, V. Srinivasan, and J. G. Fujimoto, "Fourier Domain Mode Locking at 1050 nm for ultrahigh-speed Optical Coherence Tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 322049-2051 (2007).
    [CrossRef] [PubMed]
  35. K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
    [CrossRef] [PubMed]
  36. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31,2308-2310 (2006).
    [CrossRef] [PubMed]
  37. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
    [CrossRef] [PubMed]
  38. B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
    [PubMed]
  39. M. J. Shensa, "The discrete wavelet transform: wedding the a trous and Mallat algorithms," IEEE Transactions on Signal Processing 40,2464-2482 (1992).
    [CrossRef]
  40. P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Transactions on Image Processing 7,27-41 (1998).
    [CrossRef]
  41. "Safe Use of Lasers & Safe Use of Optical Fiber Communications," (American National Standard Institute - Z136 Committee, 2000), p. 168
  42. ICNIRP, "Revision of the Guidelines on Limits of Exposure to Laser radiation of wavelengths between 400nm and 1.4µm," in International Commission on Non-Ionizing Radiation Protection, H. P. Society, ed. (International Commission on Non-Ionizing Radiation Protection, 2000), pp. 431-440.
  43. A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24,1484-1486 (1999).
    [CrossRef]
  44. R. Engbert, and R. Kliegl, "Microsaccades uncover the orientation of covert attention," Vision Research 43,1035-1045 (2003).
    [CrossRef] [PubMed]
  45. L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987).
    [CrossRef] [PubMed]
  46. S. J. Fricker, "Dynamic measurements of horizontal eye motion. I. Acceleration and velocity matrices," Invest Ophthalmol. 10,724-732 (1971).
    [PubMed]
  47. M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999).
    [PubMed]

2008

W. Drexler, and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Prog Retin Eye Res 27,45-88 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

2007

R. Huber, D. Adler, V. Srinivasan, and J. G. Fujimoto, "Fourier Domain Mode Locking at 1050 nm for ultrahigh-speed Optical Coherence Tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 322049-2051 (2007).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

2006

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31,2308-2310 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14,7144-7158 (2006).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14,3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006).
[CrossRef] [PubMed]

2005

2004

2003

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11,2753-2761 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11,2183-2189 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003).
[CrossRef] [PubMed]

R. Engbert, and R. Kliegl, "Microsaccades uncover the orientation of covert attention," Vision Research 43,1035-1045 (2003).
[CrossRef] [PubMed]

2002

2001

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

1999

A. Roorda, and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397,520-522 (1999).
[CrossRef] [PubMed]

A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24,1484-1486 (1999).
[CrossRef]

M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999).
[PubMed]

1998

1997

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

1993

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
[PubMed]

1992

M. J. Shensa, "The discrete wavelet transform: wedding the a trous and Mallat algorithms," IEEE Transactions on Signal Processing 40,2464-2482 (1992).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

1987

L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987).
[CrossRef] [PubMed]

1977

1971

S. J. Fricker, "Dynamic measurements of horizontal eye motion. I. Acceleration and velocity matrices," Invest Ophthalmol. 10,724-732 (1971).
[PubMed]

Adler, D.

Adler, D. C.

Ahmad, K.

Ahnelt, P.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Ahnelt, P. K.

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

Anger, E.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Artal, P.

Binder, S.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

Bizheva, K.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

Bower, B. A.

Bridgford, T.

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Burnes, D. L.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

Cable, A.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

Campbell, M. C. W.

Cense, B.

Chang, S.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, T. C.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

Chen, Y.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

Chinn, S. R.

Choi, S.

Choma, M. A.

Collewijn, H.

L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987).
[CrossRef] [PubMed]

de Boer, J. F.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003).
[CrossRef] [PubMed]

de Bruin, D. M.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

de-Boer, J. F.

S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003).
[CrossRef] [PubMed]

Dobre, G. M.

Donnelly, W. J.

Drexler, W.

W. Drexler, and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Prog Retin Eye Res 27,45-88 (2008).
[CrossRef]

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
[PubMed]

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Dubra, A.

Duker, J. S.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Engbert, R.

R. Engbert, and R. Kliegl, "Microsaccades uncover the orientation of covert attention," Vision Research 43,1035-1045 (2003).
[CrossRef] [PubMed]

Esmaili, D. D.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

Falkner-Radler, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

Fercher, A. F.

Ferman, L.

L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987).
[CrossRef] [PubMed]

Fernandez, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Fricker, S. J.

S. J. Fricker, "Dynamic measurements of horizontal eye motion. I. Acceleration and velocity matrices," Invest Ophthalmol. 10,724-732 (1971).
[PubMed]

Fujimoto, J. G.

W. Drexler, and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Prog Retin Eye Res 27,45-88 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

R. Huber, D. Adler, V. Srinivasan, and J. G. Fujimoto, "Fourier Domain Mode Locking at 1050 nm for ultrahigh-speed Optical Coherence Tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 322049-2051 (2007).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31,2308-2310 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14,3225-3237 (2006).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22,340-342 (1997).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22,1704-1706 (1997).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Gao, W.

Gee, B. P.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

Glittenberg, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

Golubovic, B.

Gorczynska, I.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

Gray, D. C.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Harris, C. M.

M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999).
[PubMed]

Harwood, M. R.

M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999).
[PubMed]

Hebert, T. J.

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Hitzenberger, C. K.

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11,2753-2761 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
[PubMed]

Hofer, B.

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Holzwarth, R.

Howland, B.

Howland, H. C.

Huang, D.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

Jackson, D. A.

Jiang, J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

Jones, S.

Jones, S. M.

Jonnal, R. S.

Kajic, V.

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
[PubMed]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

Kliegl, R.

R. Engbert, and R. Kliegl, "Microsaccades uncover the orientation of covert attention," Vision Research 43,1035-1045 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Kulkarni, M. D.

Laut, S.

Leitgeb, R.

Liang, J. Z.

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Lo, P. W.

Loewenstein, J.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

Mei, M.

Merigan, W.

Mezey, L. E.

M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999).
[PubMed]

Miller, D. T.

Morgan, J. E.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

Olivier, S.

Olivier, S. S.

Park, B. H.

Pflug, R.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

Podoleanu, A. G.

Popov, S.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Porter, J.

Potsaid, B.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

Považay, B.

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Prieto, P. M.

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Qiu, P.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Queener, H.

Reinholz, F.

Reitsamer, H.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Rha, J.

Rha, J. T.

Rollins, A. M.

Romero-Borja, F.

Roorda, A.

Russel, P. S.

Ruttimann, U. E.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Transactions on Image Processing 7,27-41 (1998).
[CrossRef]

Sarunic, M. V.

Sattmann, H.

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
[PubMed]

Schubert, C.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Shensa, M. J.

M. J. Shensa, "The discrete wavelet transform: wedding the a trous and Mallat algorithms," IEEE Transactions on Signal Processing 40,2464-2482 (1992).
[CrossRef]

Simpson, E.

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Srinivasan, V.

Srinivasan, V. J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31,2308-2310 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Taylor, J. R.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

Thevenaz, P.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Transactions on Image Processing 7,27-41 (1998).
[CrossRef]

Trost, P.

Tumbar, R.

Twietmeyer, T. H.

Ung-arunyawee, R.

Unser, M.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Transactions on Image Processing 7,27-41 (1998).
[CrossRef]

Unterhuber, A.

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

Vabre, L.

Van den Berg, A. V.

L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987).
[CrossRef] [PubMed]

Wadsworth, W. J.

Werner, J. S.

Williams, D. R.

Wojtkowski, M.

Wolfing, J. I.

Yang, C. H.

Yazdanfar, S.

Yun, S. H.

S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zeiler, F.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, M. T.

Zhou, Q. Y.

Am. J. Ophthalmol.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993).
[PubMed]

IEEE Transactions on Image Processing

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Transactions on Image Processing 7,27-41 (1998).
[CrossRef]

IEEE Transactions on Signal Processing

M. J. Shensa, "The discrete wavelet transform: wedding the a trous and Mallat algorithms," IEEE Transactions on Signal Processing 40,2464-2482 (1992).
[CrossRef]

Invest Ophthalmol Vis Sci

B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published).
[PubMed]

Invest Ophthalmol.

S. J. Fricker, "Dynamic measurements of horizontal eye motion. I. Acceleration and velocity matrices," Invest Ophthalmol. 10,724-732 (1971).
[PubMed]

Invest. Ophthalmol. Vis. Sci.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Journal of Neuroscience

M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999).
[PubMed]

Nature

A. Roorda, and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397,520-522 (1999).
[CrossRef] [PubMed]

Nature Medicine

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001).
[CrossRef] [PubMed]

Opt Express

E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995).
[CrossRef]

Opt. Express

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11,2183-2189 (2003).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14,3225-3237 (2006).
[CrossRef] [PubMed]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3,219-229 (1998).
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11,2753-2761 (2003).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005).
[CrossRef] [PubMed]

Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13,4792-4811 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13,8532-8546 (2005).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10,405-412 (2002).
[PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14,7144-7158 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

Opt. Express.

S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003).
[CrossRef] [PubMed]

Opt. Lett.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22,340-342 (1997).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22,1704-1706 (1997).
[CrossRef]

A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23,147-149 (1998).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31,2308-2310 (2006).
[CrossRef] [PubMed]

R. Huber, D. Adler, V. Srinivasan, and J. G. Fujimoto, "Fourier Domain Mode Locking at 1050 nm for ultrahigh-speed Optical Coherence Tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 322049-2051 (2007).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004).
[CrossRef] [PubMed]

A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24,1484-1486 (1999).
[CrossRef]

Proceedings of the National Academy of Sciences of the United States of America

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006).
[CrossRef] [PubMed]

Prog Retin Eye Res

W. Drexler, and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Prog Retin Eye Res 27,45-88 (2008).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Vision Research

R. Engbert, and R. Kliegl, "Microsaccades uncover the orientation of covert attention," Vision Research 43,1035-1045 (2003).
[CrossRef] [PubMed]

L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987).
[CrossRef] [PubMed]

Other

"Safe Use of Lasers & Safe Use of Optical Fiber Communications," (American National Standard Institute - Z136 Committee, 2000), p. 168

ICNIRP, "Revision of the Guidelines on Limits of Exposure to Laser radiation of wavelengths between 400nm and 1.4µm," in International Commission on Non-Ionizing Radiation Protection, H. P. Society, ed. (International Commission on Non-Ionizing Radiation Protection, 2000), pp. 431-440.

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular disease (Slack Inc, Thorofare, New Jersey, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

3D-OCT at 800 nm and 1060 nm of a normal retina (A-G) and a light pigmented retina (H-L): (A) fundus photo; (B) 3D-OCT at 800 nm over 20°×20°, 2× axially stretched to emphasize layer structure over wider fields, 512×128 depth scans (View 1); (C) 1060 nm 3D-OCT over 20°×20°, 2× axially stretched, 512×128 depth scans (View 2); (D) en face fundus image of the choroid using 3D-OCT, extracted from (B); (E) high definition (4096 depth scans) 3D-OCT scan over 35°; (F) en face wide field (35°×35°) fundus image of the choroid using 1060 nm 3D-OCT; (G) high definition (2048 pixel) 1060 nm 3D-OCT scan over 35°; (H) en face wide (35°×35°) field fundus image of the retina using 1060 nm 3D-OCT, extracted from (I); (I) wide field 1060 nm 3D-OCT, 2× axially stretched, 512×512 pixel (View 3), also represented in the traditional OCT color map (View 4) and color coded to emphasize the choriocapillaris and the deeper choroidal vasculature (View 5); (J) volumetric rendering of wide field 1060 nm 3D-OCT, extracted from (I); (K) en face wide (35°×35°) field fundus image of the choroid using 1060 nm 3D-OCT, extracted from (I); (L) high definition (2048 pixel) 1060 nm 3D-OCT scan over 35°. Additional color maps and transfer functions are available for use with the datasets in this paper (Color Maps).

Fig. 2.
Fig. 2.

UHS 3D-OCT (A-I) and AO OCT (J-Q) at 800 nm of a normal retina: en face fundus image over 8°×8° (512×512 depth scans) of the retina using UHS 3D-OCT at 20,000 (A), 80,000 (B) and 160,000 (C) A-scans/s; red arrows indicate significant reduction of motion artifacts with increasing scanning speed; (D-F) representative central cross-sectional tomograms extracted from the three respective volumes; (G) fundus photograph for comparison with (H); Gvoxel UHS 3D-OCT (1024×1024×1024 voxel) enables high definition OCT en face fundus image (H) and volumetric rendering (I). Cellular resolution retinal imaging using AO OCT: isotropic volumetric AO OCT in the photoreceptor region at 2° (J, View 6) and 4° (N, View 7) parafoveal; (K, O) volumetric rendering at 2° and 4°, respectively; (L, P) en face image at the level of the inner/outer photoreceptor junction at 2° (L) and 4° (P), respectively; (M, Q) en face image at the level outer part of the tips of the outer photoreceptors at 2° (M) and 4° (Q), respectively (cf. also Table 2 for cone densities).

Fig. 3.
Fig. 3.

3D-OCT (E-H) and AO OCT (I-T) at 800 nm of a patient with Type 2 Macular Telangiectasia: (A) fundus photo; (B) autofluorescence fundus image; (C) fluorescein angiography (early phase); (D) fluorescein angiography (late phase); (E-G) representative cross-section from 3D-OCT, taken from (H); (H) 3D-OCT at 800 nm over 20°×20° (512×128 depth scans, 2× axially stretched View 8); Cellular resolution retinal imaging using AO OCT: (I) isotropic, volumetric AO OCT at 0° (View 9), retinal location indicated by white dashed line in (G); (J) volumetric rendering at 0°; cross-sections (K, L) and en face images at the level of the outer nuclear layer (M) and retinal pigment epithelium (N) at 0°; arrows in (K) indicate areas of little (green), medium (yellow) and significant (red) impairment; (O) isotropic volumetric AO OCT at 6° parafoveal location (View 10), retinal location indicated by yellow dashed line in (G); en face images at the level of the nerve fiber bundles at 6° (Q); capillaries in the inner nuclear layer at 6° (R); inner/outer photoreceptor junction at 6° (S) and at the level of the tips of the outer photoreceptors at 6°(T) (cf. also Table 2 for cone densities).

Fig. 4.
Fig. 4.

3D-OCT, 1060 nm 3D-OCT and AO OCT at 800 nm of a patient with retinitis pigmentosa: (A) fundus photo; (B) 3D-OCT at 800 nm over 20°×20° (512×128 depth scans, 2× axially stretched, View 11); (C) 1060 nm 3D-OCT over 20×20° (512×512 depth scans, 2× axially stretched, View 12); (D) en face fundus image of the choroid using 3D-OCT, extracted from (B); (E) high definition (4096 depth scans) 3D-OCT scan over 35°; (F) en face wide field (~35°×35°) fundus image of the choroid using 1060 nm 3D-OCT; (G) high definition (2048 pixel) 1060 nm 3D-OCT scan over 35°; cellular resolution retinal imaging using AO OCT: (H) cross-section and en face image (I) of s volume at the level of the retinal pigment epithelium; retinal location indicated by white dashed line in (G); (J) volumetric AO OCT at 4° isotropic parafoveal (View 13); retinal location indicated by yellow dashed line in (G); (K) volumetric rendering at 4°; (L) en face images at the level of the inner/outer photoreceptor junction at 6°; (M) at the level of the tips of the outer photoreceptors at 6°(M) (cf. also Table 2 for cone densities).

Fig. 5.
Fig. 5.

Left: Decrease of optical OCT signal strength with speed. Signal loss with uncompensated reference arm (red), signal loss (green) with power increase in the reference arm (purple) is approximately halved and permits to increase the speed with less impact on the sensitivity, measured sensitivity (black, including optical losses). Right: Imaging angle and width of the fast axis suppressing motion artifacts due to fixation drift (gold) critically sampled at 20 µm transversal resolution (10 µm spacing). At speeds above ~50 kl/s equivalent to 5°×5° the overall motion free imaging range is governed by the blinking rate when the drift is corrected; 3s blink range for a square image (green, linear inlet). To correct normal micro-saccades (MS) within 5°×5° a speed above 400 kl/s is necessary (red). Quasi-static wide-field imaging where all motion artifacts (350°/s) can be suppressed is found around 10 Ml/s sampling rate. Microsaccades can also be prevented by acquisition within the 0.5–2 s timeframe between two MS (black). Snapshot type-imaging of the macula (~8°) can be achieved with speeds above 150 kl/s.

Fig. 6.
Fig. 6.

Drift motion artifact ambiguity free imaging zones (solid squares) and blink free imaging zones (square frames) at critical sampling, assuming a max. drift of 10°/s and a blink rate of ~3 Hz for the investigated systems. Maximum motion due to high speed, high displacement microsccades (inner dotted circle normals, outer pathological) distorts the scan, limiting the width of the fast axis scan. Increase in the sampling speed significantly enlarges the “snapshot” region towards the perifovea. Adaptive optics, due to its much higher transversal resolution stays limited to small sub-regions and sensitive to microsaccades.

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Tables (3)

Tables Icon

Table 1. Key technological parameters of OCT systems used in this study.

Tables Icon

Table 2. Measured cone density for different subjects.

Tables Icon

Table 3. Sampling parameters of OCT systems used in this study.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ I OCT = 2 · S R S R 2 .
n ph = P max ( v ) S R · h · v avg · R ,
r deg = 1 c · r lin = s f · Δ x c · 2 · O S ,
v f = Δ x 2 · O S · S R , v s = v f D C · s f = Δ x 2 · O S · S R D C · s f ,
S R r deg · c 4 · D C · O S 2 Δ x 2 · v 0 .

Metrics