Abstract

Fast T-scanning (transverse scanning, en-face) was used to build B-scan or C-scan optical coherence tomography (OCT) images of the retina. Several unique signature patterns of en-face (coronal) are reviewed in conjunction with associated confocal images of the fundus and B-scan OCT images. Benefits in combining T-scan OCT with confocal imaging to generate pairs of OCT and confocal images similar to those generated by scanning laser ophthalmoscopy (SLO) are discussed in comparison with the spectral OCT systems. The multichannel potential of the OCT/SLO system is demonstrated with the addition of a third hardware channel which acquires and generates indocyanine green (ICG) fluorescence images. The OCT, confocal SLO and ICG fluorescence images are simultaneously presented in a two or a three screen format. A fourth channel which displays a live mix of frames of the ICG sequence superimposed on the corresponding coronal OCT slices for immediate multidimensional comparison, is also included. OSA ISP software is employed to illustrate the synergy between the simultaneously provided perspectives. This synergy promotes interpretation of information by enhancing diagnostic comparisons and facilitates internal correction of movement artifacts within C-scan and B-scan OCT images using information provided by the SLO channel.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  3. A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23,147-149 (1998).
    [CrossRef]
  4. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3,12-20 (1998).
    [CrossRef]
  5. C. C. Rosa, J. Rogers, J. Pedro, R. Rosen, and A. Podoleanu, "Multi-scan time domain OCT for retina imaging," Appl. Opt. 46, 1795-1807 (2007).
    [CrossRef] [PubMed]
  6. A. Gh. Podoleanu and D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).
    [CrossRef]
  7. M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Dynamic focus in optical coherence tomography for retinal imaging," J. Biomed Opt. 11, 054013 (2006).
    [CrossRef] [PubMed]
  8. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transversal scanning OCT," Opt. Lett. 31,1821-1823 (2006).
    [CrossRef] [PubMed]
  9. S. Tuohy, A. Bradu, A. Gh. Podoleanu, and N. Chateau, "Correcting ocular aberrations with a high stroke deformable mirror," Proc.SPIE 662766271L (2007).
    [CrossRef]
  10. D. Merino, Ch. Dainty, A. Bradu, and A. Gh. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
    [CrossRef] [PubMed]
  11. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008).
    [CrossRef]
  12. A. Gh. Podoleanu and R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution," Prog. Retin. Eye Res. 27, 464-499 (2008).
    [CrossRef] [PubMed]
  13. C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by highspeed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).
    [CrossRef] [PubMed]
  14. R. Huber, D. C. Adler, V. G. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
    [CrossRef]
  15. A. Gh. Podoleanu, G. M. Dobre, R. G. Cucu, R. B. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L A. Yannuzzi, Y. Fisher, D. Orlock, R Weitz, J. A. Rogers, S. Dunne, and A. Boxer, "Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy," J. Biomed. Opt. 9,86-93 (2004).
    [CrossRef] [PubMed]
  16. A. Gh. Podoleanu and D. A. Jackson, "Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999).
    [CrossRef]
  17. B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356-359 (1998).
    [CrossRef] [PubMed]
  18. A. Gh. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. B. Rosen, "Correction of distortions in OCT imaging of the eye," Phys. Med. Biol. 49, 1277-1294 (2004).
    [CrossRef] [PubMed]
  19. R. G. Cucu, A. Gh. Podoleanu, A. Rogers, J. Pedro, and R. B. Rosen, "Combined confocal scanning ophthalmoscopy/en face T-scan based ultrahigh resolution OCT of the human retina in vivo," Opt. Lett. 31, 1684-1687 (2006).
    [CrossRef] [PubMed]
  20. A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, and P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12,014019 (2007).
    [CrossRef] [PubMed]
  21. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  22. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006).
    [CrossRef] [PubMed]
  23. M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
    [CrossRef] [PubMed]
  24. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
    [CrossRef] [PubMed]
  25. S. L. Jiao, C. Y. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, "Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography," Opt. Express 14, 3368-3376 (2006).
    [CrossRef] [PubMed]
  26. Y. Yasuno, Y. J. Hong, M. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo highcontrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
    [CrossRef] [PubMed]
  27. M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
    [CrossRef] [PubMed]
  28. MATLAB, http://www.mathworks.com/products/matlab.
    [CrossRef]

2008

2007

2006

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Dynamic focus in optical coherence tomography for retinal imaging," J. Biomed Opt. 11, 054013 (2006).
[CrossRef] [PubMed]

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

D. Merino, Ch. Dainty, A. Bradu, and A. Gh. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
[CrossRef] [PubMed]

S. L. Jiao, C. Y. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, "Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography," Opt. Express 14, 3368-3376 (2006).
[CrossRef] [PubMed]

R. G. Cucu, A. Gh. Podoleanu, A. Rogers, J. Pedro, and R. B. Rosen, "Combined confocal scanning ophthalmoscopy/en face T-scan based ultrahigh resolution OCT of the human retina in vivo," Opt. Lett. 31, 1684-1687 (2006).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transversal scanning OCT," Opt. Lett. 31,1821-1823 (2006).
[CrossRef] [PubMed]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006).
[CrossRef] [PubMed]

2005

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

2004

A. Gh. Podoleanu, G. M. Dobre, R. G. Cucu, R. B. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L A. Yannuzzi, Y. Fisher, D. Orlock, R Weitz, J. A. Rogers, S. Dunne, and A. Boxer, "Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy," J. Biomed. Opt. 9,86-93 (2004).
[CrossRef] [PubMed]

A. Gh. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. B. Rosen, "Correction of distortions in OCT imaging of the eye," Phys. Med. Biol. 49, 1277-1294 (2004).
[CrossRef] [PubMed]

2003

1999

1998

B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356-359 (1998).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef] [PubMed]

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23,147-149 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3,12-20 (1998).
[CrossRef]

A. Gh. Podoleanu and D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).
[CrossRef]

Adler, D. C.

Akiba, M.

Baumann, B.

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transversal scanning OCT," Opt. Lett. 31,1821-1823 (2006).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef] [PubMed]

Bouma, B. E.

Bradu, A.

S. Tuohy, A. Bradu, A. Gh. Podoleanu, and N. Chateau, "Correcting ocular aberrations with a high stroke deformable mirror," Proc.SPIE 662766271L (2007).
[CrossRef]

D. Merino, Ch. Dainty, A. Bradu, and A. Gh. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
[CrossRef] [PubMed]

Cense, B.

Chen, T. C.

Chen, Y.

Cucu, R. G.

Dainty, Ch.

de Boer, J. F.

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Evans, J. W.

Fercher, A. F.

Fujimoto, J. G.

R. Huber, D. C. Adler, V. G. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
[CrossRef]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Gh, A.

A. Gh. Podoleanu and R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution," Prog. Retin. Eye Res. 27, 464-499 (2008).
[CrossRef] [PubMed]

A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, and P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12,014019 (2007).
[CrossRef] [PubMed]

S. Tuohy, A. Bradu, A. Gh. Podoleanu, and N. Chateau, "Correcting ocular aberrations with a high stroke deformable mirror," Proc.SPIE 662766271L (2007).
[CrossRef]

R. G. Cucu, A. Gh. Podoleanu, A. Rogers, J. Pedro, and R. B. Rosen, "Combined confocal scanning ophthalmoscopy/en face T-scan based ultrahigh resolution OCT of the human retina in vivo," Opt. Lett. 31, 1684-1687 (2006).
[CrossRef] [PubMed]

D. Merino, Ch. Dainty, A. Bradu, and A. Gh. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
[CrossRef] [PubMed]

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

A. Gh. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. B. Rosen, "Correction of distortions in OCT imaging of the eye," Phys. Med. Biol. 49, 1277-1294 (2004).
[CrossRef] [PubMed]

A. Gh. Podoleanu, G. M. Dobre, R. G. Cucu, R. B. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L A. Yannuzzi, Y. Fisher, D. Orlock, R Weitz, J. A. Rogers, S. Dunne, and A. Boxer, "Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy," J. Biomed. Opt. 9,86-93 (2004).
[CrossRef] [PubMed]

A. Gh. Podoleanu and D. A. Jackson, "Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999).
[CrossRef]

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23,147-149 (1998).
[CrossRef]

A. Gh. Podoleanu and D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3,12-20 (1998).
[CrossRef]

Goetzinger, E.

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef] [PubMed]

Gotzinger, E.

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Dynamic focus in optical coherence tomography for retinal imaging," J. Biomed Opt. 11, 054013 (2006).
[CrossRef] [PubMed]

Götzinger, E.

Gregori, G.

Hitzenberger, C. K.

Hong, Y.

Hong, Y. J.

Huber, R.

Jiao, S. L.

Kerbage, C.

Kim, S.

Knighton, R. W.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Lee, E. C.

Leitgeb, R.

Lim, H.

Lo, P.

Makita, M.

Makita, S.

Masters, B. R.

Merino, D.

Miura, M.

Mujat, M.

Park, B. H.

Pedro, J.

Pierce, M. C.

Pircher, M.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt. Lett. 33, 22-24 (2008).
[CrossRef]

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Dynamic focus in optical coherence tomography for retinal imaging," J. Biomed Opt. 11, 054013 (2006).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transversal scanning OCT," Opt. Lett. 31,1821-1823 (2006).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef] [PubMed]

Podoleanu, A.

Puliafito, C. A.

Rogers, J.

Rosa, C. C.

Rosen, R.

Rosen, R. B.

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

Sattmann, H.

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef] [PubMed]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Srinivasan, V. G.

Tearney, G. J.

Trost, P.

Tuohy, S.

S. Tuohy, A. Bradu, A. Gh. Podoleanu, and N. Chateau, "Correcting ocular aberrations with a high stroke deformable mirror," Proc.SPIE 662766271L (2007).
[CrossRef]

Van Velthoven, M. E. J.

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

Verbraak, F. D.

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

Werner, J. S.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Wu, C. Y.

Yamanari, M.

Yannuzzi, L. A.

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Zawadzki, R. J.

Zhou, Q.

Appl. Opt.

Electron. Lett.

A. Gh. Podoleanu and D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).
[CrossRef]

IEEE Trans. Image Process.

M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Express 15, 16922-16932 (2007). 28. P. Thévenaz, U.E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef] [PubMed]

J. Biomed Opt.

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Dynamic focus in optical coherence tomography for retinal imaging," J. Biomed Opt. 11, 054013 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Gh. Podoleanu, G. M. Dobre, R. G. Cucu, R. B. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L A. Yannuzzi, Y. Fisher, D. Orlock, R Weitz, J. A. Rogers, S. Dunne, and A. Boxer, "Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy," J. Biomed. Opt. 9,86-93 (2004).
[CrossRef] [PubMed]

A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, and P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12,014019 (2007).
[CrossRef] [PubMed]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3,12-20 (1998).
[CrossRef]

Ophthalmology

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Opt. Express

B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356-359 (1998).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by highspeed optical coherence tomography," Opt. Express 11, 2753-2761 (2003).
[CrossRef] [PubMed]

Y. Yasuno, Y. J. Hong, M. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo highcontrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

D. Merino, Ch. Dainty, A. Bradu, and A. Gh. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
[CrossRef] [PubMed]

S. L. Jiao, C. Y. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, "Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography," Opt. Express 14, 3368-3376 (2006).
[CrossRef] [PubMed]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. Gh. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. B. Rosen, "Correction of distortions in OCT imaging of the eye," Phys. Med. Biol. 49, 1277-1294 (2004).
[CrossRef] [PubMed]

Proc.SPIE

S. Tuohy, A. Bradu, A. Gh. Podoleanu, and N. Chateau, "Correcting ocular aberrations with a high stroke deformable mirror," Proc.SPIE 662766271L (2007).
[CrossRef]

Prog. Retin. Eye Res.

A. Gh. Podoleanu and R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution," Prog. Retin. Eye Res. 27, 464-499 (2008).
[CrossRef] [PubMed]

Retina

M. E. J. Van Velthoven, F. D. Verbraak, L. A. Yannuzzi, R. B. Rosen, A. Gh. Podoleanu, and M. D. De Smet, "Imaging the retina by en-face optical coherence tomography," Retina 26,129-136 (2006).
[CrossRef] [PubMed]

Other

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Combined OCT/SLO system. MX, MY: galvanometer mirrors of the XY scanning pair. The confocal channels display a standard SLO image and an ICG fluorescence image (according to Section 3 below).

Fig. 2.
Fig. 2.

Association of patterns provided by C-scans and B-scans with different diseases.

Fig. 3.
Fig. 3.

96 4-C-scan ICG/OCT/SLO sets of a patient with polypoidal choroidal vasculopathy. (a) XY display (View 1); (b) Light-box display (View 2). The SLO image in the upper left of each 4-up C-scan appears thickened with a lumpy, multi-lobular or “polypoidal” texture to the surface of the retina, as shown by the arrows. (Counter 15 s on the ICG image): Early arterial phase of ICG sequence reveals abnormal choroidal vessels. OCT depth is within the choroid and shows evidence of shadowing. (Counter 28 s on the ICG image): Mid arterial-venous phase demonstrates a leash of deep abnormal vessels with hyper-fluorescent bulbous endings. OCT image outlines the overlying serous elevation surrounding the vessels and hot spots. (Counter over 1 minute on the ICG image): Full venous phase of the ICG angiogram shows increased leakage at vessel endings. The OCT reveals the outlines of the serous cuff around the vessels and enlarging fluorescence accumulations. In all C-scan images, lateral size is 22°×22°.

Fig. 4.
Fig. 4.

ICG/OCT/SLO sets of the same patient as that in Fig. 3 (with polypoidal choroidal neovascularization). 18 B-scan OCT images (View 3) are collected for 7 different orientations of the red line projected over the ICG image, through different areas of leakage: images 1, 2, 3, 14 and 15 (1st orientation), images 4 and 5 (2nd orientation), image 6 (3rd orientation), images 7, 8 and 9 (4th orientation), images 10, 11, 12 (5th orientation), image 13 (6th orientation) and images 16, 17 and 18 (7th orientation). The OCT reveals corrugated elevation of the RPE. The straightness and the verticality of the lines in the images provided by the SLO channel in the lower right frame confirm good alignment with minimal movement artifacts. The Z-axis (according to Fig. 1) of the B-scan (vertical Y axis in the display) is expanded by the horizontally confined configuration of the multi-channel display producing a vertical exaggeration of the aspect ratio. C-scan images: lateral size is 22° ×22°. B-scan OCT image: lateral size (horizontal) is 22° and 1.3 mm in depth (vertical, measured in air).

Fig. 5.
Fig. 5.

Wide display of B-scan images in the B-scan regime, for the same patient as that in Fig. 3 (with polypoidal choroidal neovascularization). 6 B-scan OCT images (View 4) are collected for 3 different orientations of the red line projected over the SLO image (bottom right). Images 1, 2 and 6 (1st orientation), images 3 and 4 (2nd orientation) and image 5 (3rd orientation). The inset underneath the B-scan image on the right displays the C-scan just before switching the systems from C-scan to B-scan. The SLO image in the inset underneath on the left is the image generated by the SLO channel in the B-scan regime. B-scan OCT image, lateral size 22° and 1.3 mm in depth (measured in air).

Fig. 6.
Fig. 6.

B-scan OCT at its origin on the ICG image (View 5) for the same case of polypoidal choroidal neovascularization in Figs. 3 to 5.

Fig. 7.
Fig. 7.

4-up image display of scans acquired in the first 1 minute from a patient with recurrent choroidal neovascularization (View 6). X-Y: Each image in the panel captures the same 29 degrees, since only one scan is actually performed with feeds to 3 separate channels. The panel seen in the lower right of the 4-up is a mixture of the ICG channel (lower left) and the C-scan OCT (upper right). The ICG sequence shows the contrast dye enters the normal vessels and the abnormal nest of choroidal neovascularization at the edge of the old laser scar.

Fig. 8.
Fig. 8.

For the same patient as in Fig. 7, illustration of the eye movement correction of the C-scan OCT images and of the ICG images using the information in the SLO channel in (a) and validation of this correction on the inferred B-scan images in (b). (a) X-Y display: by scrolling the cursor through the 36 images it can be noticed that the retina features are stable transversally, the bright lesion is fixed while the small bright patch corresponding to the interface optics stray reflection oscillates transversally (View 7); (b) X-Z (top) and Y-Z (bottom) display: traces of the retina are now vertical. Image 420 in the X-Z sequence and image 149 in the Y-Z sequence show cuts through the interface optics stray reflection. Their waved contours display the eye movement in the X-Z and in the Y-Z plane, respectively (View 8).

Fig. 9.
Fig. 9.

Comparison of B-scan inferred traces in the stacks of C-scan images in Figs. 7 and 8, illustrating the capability of detection of lateral eye movements using the SLO image, and the possibility of using such information to align transversally all the C-scan images in the 4-up display. The depth axis is oriented upwards in all images.

Fig. 10.
Fig. 10.

Panel of 4 images generated in the B-scan regime (View 9) for the same patient as that in Fig. 7 (with recurrent choroidal neovascularization). 34 images made of two C-scans (left column) and the pair of images OCT/SLO in the B-scan regime (right column), following a 1st image in the set which is a 4-up all C-scan images. The system has been switched into the B-scan regime at 1 minute 50 seconds after the ICG injection, starting with the image number 2. The B-scan OCT in the upper right panel reveals a corrugated inner retinal surface due to cicatricial contraction from the previous laser treatment. The lower left panel shows retained ICG dye in the vessels and some leakage at the site of the membrane. The spatial limitations imposed upon the aspect ratio due to the 4-up display results in compression of the horizontal dimension producing a somewhat exaggerated vertical appearance of the cross-sectional features of the B-scan. The frame in the lower right shows the lateral movements during the acquisition of the B-scan OCT. Note the lateral shifts in vertical lines.

Fig. 11.
Fig. 11.

CSR case, first phase, up to 59 seconds (View 10).

Fig. 12.
Fig. 12.

Display of 4 images in the B-scan regime (View 11) for the same patient as that in Fig. 11 (CSR case). 7 images are shown obtained for three different positions of the red line over the ICG image in the bottom left. Image 1 (for the 1st position), images 2, 3 and 4 (2nd position) and images 5, 6 and 7 (3rd position).

Fig. 13.
Fig. 13.

The same case of CSR in Figs. 11 and 12. Display of 22 B-scan images obtained in the B-scan regime (View 12) for six different positions of the red line oriented horizontally over the SLO image in the bottom right inset. Images 1 and 2 (1st position), images 3–8 (2nd position), image 9 3rd position), image 10 (4th position), images 11 and 12 (5th position) and images 13–19 (6th position).

Fig. 14.
Fig. 14.

4-C-scan images of a patient with diabetic retinopathy (View 13).

Fig. 15.
Fig. 15.

ICG/OCT/SLO sets of a patient with diabetic retinopathy in the B-scan regime. 16 B-scan OCT images (View 14) are shown, collected after 2 minutes 40 s for 4 different orientations of the red line projected over the ICG image. Images 1, 2 and 3 (1st orientation), 4, 5, 6 and 7 (2nd orientation), images 8, 9, 14, 15 and 16 (3rd orientation) and images 10 to 13 (4th orientation).

Figure 16.
Figure 16.

ICG/OCT/SLO sets of a patient with diabetic retinopathy. 15 B-scan OCT images (View 15) are collected at different moments after 2 minutes 40 s for 4 different orientations of the red line projected over the ICG image. Images 1–7 (1st orientation), images 8–11 (2nd orientation), images 12–15 (3rd orientation).

Fig. 17.
Fig. 17.

The images on the left show the SLO (top) and ICG image (bottom) just before the system was switched into B-scan regime. The columns in the middle represent instances where the eye has moved laterally while collecting the B-scan image (top) as shown by the jaggedness of the vertical bright traces in the SLO image (bottom). Corrected B-scan OCT mages are shown in the next column, where the bright traces underneath show the effect of the alignment by being moved in the opposite direction. Two sets are shown (View 16), for a polypoidal choroidal vasculopathy (1st set) and for a diabetic retinopathy case (2nd set).

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Metrics