Abstract

Ultrabroadband sources, such as multiplexed superluminescent diodes (SLDs) and femtosecond lasers, have been successfully employed in adaptive optics optical coherence tomography (AO-OCT) systems for ultrahigh resolution retinal imaging. The large cost differential of these sources, however, motivates the need for a performance comparison. Here, we compare the performance of a Femtolasers Integral Ti:Sapphire laser and a Superlum BroadLighter T840, using the same AO-OCT system and the same subject. In addition, we investigate the capability of our instrument equipped with the Integral to capture volume images of the fovea and adjacent regions on a second subject using the AO to control focus in the retina and custom and freeware image registration software to reduce eye motion artifacts. Monochromatic ocular aberrations were corrected with a woofer-tweeter AO system. Coherence lengths of the Integral and BroadLighter were measured in vivo at 3.2 µm and 3.3 µm, respectively. The difference in dynamic range was 5 dB, close to the expected variability of the experiment. Individual cone photoreceptors, retinal capillaries and nerve fiber bundles were distinguished in all three dimensions with both sources. The acquired retinal volumes are provided for viewing in OSA ISP, allowing the reader to data mine at the microscope level.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
    [CrossRef] [PubMed]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
    [CrossRef] [PubMed]
  4. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. Part 1, 38,6133-6137 (1999).
    [CrossRef]
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
    [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003).
    [CrossRef] [PubMed]
  7. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004).
    [CrossRef] [PubMed]
  8. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004).
    [CrossRef] [PubMed]
  9. J. Porter, H. Queener, J. Lin, K. E. Thorn, and A. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, 2006).
    [CrossRef]
  10. Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13,4792-4811 (2005).
    [CrossRef] [PubMed]
  11. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13,8532-8546 (2005).
    [CrossRef] [PubMed]
  12. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
    [CrossRef] [PubMed]
  13. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006).
    [CrossRef] [PubMed]
  14. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24,1327-1336 (2007).
    [CrossRef]
  15. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24,1373-1383 (2007).
    [CrossRef]
  16. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16,8126-8143 (2008).
    [CrossRef] [PubMed]
  17. E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16,11083-11094 (2008).
    [CrossRef] [PubMed]
  18. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, "High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors," J. Opt. Soc. Am. A 24,1305-1312 (2007).
    [CrossRef]
  19. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
    [CrossRef] [PubMed]
  20. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004).
    [CrossRef] [PubMed]
  21. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12,041205 (2007).
    [CrossRef]
  22. F. C. Delori, R. H. Webb, and D. H. Sliney, "Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices," J. Opt. Soc. Am. A 24,1250-1265 (2007).
    [CrossRef]
  23. A.N.S.I., "Z136.1 Safe use of lasers" (Laser Institute of America, 2007).
  24. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11,36-43 (2004).
  25. P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7,27-41 (1998).
    [CrossRef]
  26. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
    [CrossRef] [PubMed]
  27. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
    [CrossRef] [PubMed]
  28. W. Bloom, and D. W. Fawcett, A Textbook of Histology (W. B. Saunders Company, 1975).
  29. M. J. Hogan, J. A. Alvarado, and J. Esperson Weddell, Histology of the Human Eye (W. B. Saunders Company, 1971).

2008

2007

2006

2005

2004

2003

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

2001

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

1999

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. Part 1, 38,6133-6137 (1999).
[CrossRef]

1998

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7,27-41 (1998).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

1990

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
[CrossRef] [PubMed]

Abramoff, M. D.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11,36-43 (2004).

Ahnelt, P.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

Ahnelt, P. K.

Artal, P.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
[CrossRef] [PubMed]

Bigelow, C. E.

Bloom, B.

Bouma, B. E.

Bower, B. A.

Cense, B.

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16,8126-8143 (2008).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12,041205 (2007).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Chen, D. C.

Chen, T. C.

Choi, S.

Choi, S. S.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
[CrossRef] [PubMed]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
[CrossRef] [PubMed]

de Boer, J. F.

Delori, F. C.

Drexler, W.

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

Duker, J. S.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

Ferguson, R. D.

Fernandez, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Gao, W.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Hammer, D. X.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Iftimia, N. V.

Izatt, J. A.

Jones, S.

Jones, S. M.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
[CrossRef] [PubMed]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

Ko, T. H.

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

Laut, S.

Leitgeb, R.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Magalhaes, P. J.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11,36-43 (2004).

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
[CrossRef] [PubMed]

Miller, D. T.

Mitsui, T.

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. Part 1, 38,6133-6137 (1999).
[CrossRef]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12,041205 (2007).
[CrossRef]

Nassif, N. A.

Oliver, S. S.

Olivier, S.

Olivier, S. S.

Park, B. H.

Pierce, M. C.

Povazay, B.

Prieto, P. M.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Ram, S. J.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11,36-43 (2004).

Rha, J.

Rha, J. T.

Ruttimann, U. E.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7,27-41 (1998).
[CrossRef]

Sattmann, H.

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Silva, D. A.

Sliney, D. H.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
[CrossRef] [PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Thevenaz, P.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7,27-41 (1998).
[CrossRef]

Unser, M.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7,27-41 (1998).
[CrossRef]

Unterhuber, A.

Ustun, T. E.

Vabre, L.

Webb, R. H.

Werner, J. S.

Wojtkowski, M.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

Yun, S. H.

Zawadzki, R. J.

Zhang, Y.

Zhao, M. T.

Biophotonics Int.

M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, "Image processing with ImageJ," Biophotonics Int. 11,36-43 (2004).

IEEE Trans. Image Process.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7,27-41 (1998).
[CrossRef]

J. Biomed. Opt.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, "Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging," J. Biomed. Opt. 13,024008 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7,457-463 (2002).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12,041205 (2007).
[CrossRef]

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292,497-523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. Part 1, 38,6133-6137 (1999).
[CrossRef]

Nat. Med.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7,502-507 (2001).
[CrossRef] [PubMed]

Opt. Express

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12,367-376 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12,2404-2422 (2004).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12,2435-2447 (2004).
[CrossRef] [PubMed]

Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13,4792-4811 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13,8532-8546 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16,8126-8143 (2008).
[CrossRef] [PubMed]

E. J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16,11083-11094 (2008).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Vision Res.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45,3432-3444 (2005).
[CrossRef] [PubMed]

Other

J. Porter, H. Queener, J. Lin, K. E. Thorn, and A. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, 2006).
[CrossRef]

A.N.S.I., "Z136.1 Safe use of lasers" (Laser Institute of America, 2007).

W. Bloom, and D. W. Fawcett, A Textbook of Histology (W. B. Saunders Company, 1975).

M. J. Hogan, J. A. Alvarado, and J. Esperson Weddell, Histology of the Human Eye (W. B. Saunders Company, 1971).

Supplementary Material (1)

» Media 1: AVI (80350 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of the UHR-AO-OCT system for retinal imaging. The sample arm contains a woofer-tweeter AO system for correction of ocular monochromatic aberrations. The AO cascades an AOptix deformable mirror (DM) (36 electrodes; 16 µm stroke) for correction primarily of lower-order aberrations and a Boston MicroMachines Corporation (BMC) DM (140 actuators; 3.8 µm stroke) for correction primarily of higher-order aberrations. Unlike previous woofer-tweeter systems for the eye, the AOptix DM is strategically positioned close to the eye to prevent beam distortion when large low-order aberrations are present in the eye [13]. Wavefront measurements are obtained with a Shack-Hartmann wavefront sensor (20×20 lenslet array). A customized achromatizing lens (acl) was introduced in the beam path directly behind the fiber collimator in the sample arm for correction of ocular chromatic aberrations. A similar lens was placed in the reference arm to compensate for dispersion of the former. A single glass slide (0.24 mm thick) was used in the source arm for calibrating the SD-OCT system. The Superlum BroadLighter was used with HI780 fiber, an 80/20 coupler, and an optical isolator. The Femtolasers Integral was used with SM600 fiber, a 50/50 coupler, and no isolator. Key: I: isolator; p1-p3: pellicle beamsplitters; ph: pinhole; acl: custom achromatizing lens; wv: water vial for balancing the chromatic dispersion of the eye; P/R: pupil and retina conjugate planes. Footprint of the instrument is ~2.5’×4’.

Fig. 2.
Fig. 2.

Integral and BroadLighter spectra measured in the sample arm. Measurements were acquired at the end of the sample arm at the location of the eye. The FWHM of the Integral (red) and BroadLighter (black) spectra are approximately 120 nm and 110 nm, respectively. Overall spectral shape of the Integral is significantly more Gaussian than that of the BroadLighter. Note that the full 135 nm bandwidth of the Integral did not reach the location of the eye, likely due to spectral losses in the SM600 fiber and sample arm.

Fig. 3.
Fig. 3.

Normalized coherence functions calculated from the BroadLighter (black line) and Integral (red line) spectra of Fig. 2. A refractive index of 1.38 for retinal tissue is assumed.

Fig. 4.
Fig. 4.

Normalized coherence functions of the BroadLighter (black line) and Integral (red line) sources using the specular reflection from the foveal umbo.

Fig. 5.
Fig. 5.

UHR-AO-OCT volume images of the foveal pit in the same subject, a 23-year old male, using the (a) BroadLighter (Case 1) and (b) Integral (Case 2) light sources. Dimensions of the BroadLighter volume are 879×100×717 voxels (width×length×depth) that correspond to 791×900×645 µm. Dimensions of the Integral volume are 747×100×559 voxels (width×length×depth) that correspond to 673×900×503 µm. The specular reflection visible in the central fovea is approximately 200 µm in diameter. Focus of the UHR-AO-OCT instrument was positioned at the photoreceptor layer using the AOptix DM. Adjacent B-scans were realigned using the “StackReg” registration plug-in for ImageJ.

Fig. 6.
Fig. 6.

UHR-AO-OCT fast B-scan (inverted gray-scale) of the foveal pit of a 23-year old male obtained with the BroadLighter light source, extracted from Fig. 5 (Case 1). Scale bars indicate 100 µm. Arrows in the 3x magnified insets demark reflections from the connecting cilia and the outer photoreceptor tips that are suggestive of individual cone photoreceptors.

Fig. 7.
Fig. 7.

B-scan image extracted from the BroadLighter volume in Fig. 5 (Case 1). Data was encoded over 44 dB above the noise floor and displayed using an inverted gray scale. Note the uneven appearance of the CC that is particularly evident in the 2X magnified view (inset), which shows a highlighted rectangular region at the depth of the photoreceptors. Multiple reflections sometimes occur in the same outer segment (denoted by rectangles in the inset). Also in the inset, the strongest reflections from within the RPE often coincide with reflections from an overlying cone (denoted by circles in the inset). GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external limiting membrane; CC: connecting cilia; OTPR: outer tips of the photoreceptors; RPE: retinal pigment epithelium; C: choroid.

Fig. 8.
Fig. 8.

UHR-AO-OCT volume image of the foveal pit of a 29-year old female obtained with the Integral source (Case 3). Volume dimensions are 878×100×485 voxels (width×length×depth) that correspond to 790×900×436 µm. The specular reflection visible in the center of the fovea is approximately 500 µm in diameter. Focus of the UHR-AO-OCT instrument was positioned at the photoreceptor layer using the AOptix DM. Adjacent B-scans were realigned using the “StackReg” registration plug-in for ImageJ.

Fig. 9.
Fig. 9.

C-scans of Case 5 and Case 7 superimposed on a commercial SLO fundus image taken from the same 29-year old female subject. Both C-scans slice through the RNFL and show large blood vessels that lie at the same proximal depth. (inset) B-scan is an average of two adjacent oblique B-scans extracted from the Case 7 volume. An individual nerve fiber bundle is highlighted whose diameter was measured at 40 µm. Other bundles of similar size are also present.

Fig. 10.
Fig. 10.

UHR-AO-OCT volume images representing the four possible combinations of two retinal locations and two planes of focus, all acquired on the same subject with the Integral source. Retinal locations are (a), (b) 6 degree inferior (Case 4 and Case 5, respectively) and (c), (d) superior (Case 6 and Case 7, respectively) of the fovea. Focus was positioned at the photoreceptor (Case 4 and Case 6) and nerve fiber (Case 5 and Case 7) layers. Custom registration software was used to align adjacent A-scans and B-scans. Subject was a 29-year old female.

Fig. 11.
Fig. 11.

Rotating volumetric data set acquired at 6 degrees superior of the fovea of a 29-year old female with focus at the nerve fiber layer (Media 1).

Fig. 12.
Fig. 12.

Performance of volume registration software using the “same” C-scan extracted from Case 7: (top) unregistered, (left) registered with custom software, and (right) registered using the “StackReg” plug-in for ImageJ. The C-scan slices through the nerve fiber layer. The volume was acquired at 6 degrees superior of the fovea with focus at the nerve fiber layer. Note the dark regions in the unregistered C-scan correspond to the vitreous and are due to axial motion of the eye during the volume acquisition. White scale bars indicate a length of 100 µm.

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Metrics