Abstract

A sequential case series of post-glaucoma-surgery structures examined by three-dimensional corneal and anterior eye segment optical coherence tomography (3D-CASOCT) and 3D polarization sensitive CASOCT (PS-CASOCT) is presented. A total of 5 patients who underwent glaucoma surgery were included in this study. Of these, 1, 1, and 3 patient underwent trabeculotomy, laser iridotomy, and trabeculectomy respectively. One patient each who had undergone trabeculotomy or laser iridotomy was examined using a prototype 3D-CASOCT. This prototype is based on swept-source OCT technology, uses a probe beam with a center wavelength of 1.31 µm, and has an axial resolution of 11.6 µm and a scanning speed of 20,000 A lines/s. All 3 patients who underwent trabeculectomy were examined by PS-CASOCT, which has similar specifications to those of 3DCASOCT, measures the depth-resolved birefringence of a specimen, and yields conventional OCT images. Detailed 3D visualization of the incision site of trabeculotomy and the ablation site of laser iridotomy was achieved using 3D-CASOCT. PS-CASOCT revealed, in addition to the structural details, the birefringent properties of the tissues of the trabeculectomy bleb. Some blebs showed abnormal birefringence in the conjunctiva and in a remnant fluid pool. This may indicate the existence of fibrosis in these regions. Both 3D-CASOCT and PS-CASOCT provide clinically significant information for the postoperative assessment of structures created during glaucoma surgery. Interactive 3D datasets of all cases are provided for interactive clinical review. Complex raw 3D OCT volumes are also provided as a reference dataset for the development of PS-OCT algorithms.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Thylefors and A. D. Négrel, "The global impact of glaucoma," Bull World Health Organ. 72, 323-326 (1994).
  2. B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).
  3. C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
    [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  5. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  6. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
    [PubMed]
  7. S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
    [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  9. G. Häusler and M. W. Lindner, ""Coherence rader" and "spectral radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  12. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003).
    [CrossRef] [PubMed]
  13. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
    [CrossRef] [PubMed]
  14. K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
    [CrossRef] [PubMed]
  15. M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
    [CrossRef] [PubMed]
  16. M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
    [CrossRef] [PubMed]
  17. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, "Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging," Opt. Express 15, 7117-7125 (2007).
    [CrossRef] [PubMed]
  18. M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008).
    [CrossRef] [PubMed]
  19. S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
    [CrossRef] [PubMed]
  20. M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
    [CrossRef] [PubMed]
  21. X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of fluid flow velocity by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995).
    [CrossRef] [PubMed]
  22. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
    [CrossRef] [PubMed]
  23. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  24. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  25. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
    [CrossRef] [PubMed]
  26. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump probe technique," Opt. Lett. 28, 340-342 (2003).
    [CrossRef] [PubMed]
  27. B. E. Applegate, C. Yang, and J. A. Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005).
    [CrossRef] [PubMed]
  28. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
    [CrossRef] [PubMed]
  29. Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
    [CrossRef] [PubMed]
  30. Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
    [CrossRef] [PubMed]
  31. C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, "Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis," J. Biomed. Opt. 13, 024003 (pages 9) (2008).
    [CrossRef] [PubMed]
  32. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, "Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography," J. Biomed. Opt. 13, 034003 (pages 8) (2008).
    [CrossRef] [PubMed]
  33. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  34. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
    [CrossRef]
  35. S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002).
    [CrossRef]
  36. S. Jiao, M. Todorović, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005).
    [CrossRef] [PubMed]
  37. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  38. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
    [CrossRef]
  39. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).
  40. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
    [CrossRef] [PubMed]
  41. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
    [CrossRef] [PubMed]
  42. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007).
    [CrossRef] [PubMed]
  43. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008).
    [CrossRef] [PubMed]
  44. W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation," Opt. Lett. 33, 1330-1332 (2008).
    [CrossRef] [PubMed]
  45. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
    [CrossRef]
  46. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (pages 10) (2008).
    [CrossRef] [PubMed]
  47. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
    [CrossRef]
  48. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
    [CrossRef] [PubMed]
  49. M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
    [CrossRef] [PubMed]
  50. C. K. Hitzenberger, E. Götzinger, and M. Pircher, "Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography," Bull Soc Belge Ophtalmol. 302, 153-168 (2006).
  51. E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
    [CrossRef] [PubMed]
  52. M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008).
    [CrossRef] [PubMed]
  53. C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
    [CrossRef]
  54. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  55. K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, "Evaluation of trabeculectomy blebs by using three-dimensional cornea and anterior segment optical coherence tomography," Ophthalmology, accepted to publication.
  56. I. P. Pollack, "Current concepts in laser iridotomy," Int. Ophthalmol. Clin. 24, 153-180 (1984).
    [PubMed]
  57. A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988).
    [PubMed]
  58. Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
    [CrossRef] [PubMed]

2008

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008).
[CrossRef] [PubMed]

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation," Opt. Lett. 33, 1330-1332 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008).
[CrossRef] [PubMed]

C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

2007

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, "Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging," Opt. Express 15, 7117-7125 (2007).
[CrossRef] [PubMed]

K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

2006

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef] [PubMed]

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

2005

S. Jiao, M. Todorović, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005).
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).

B. E. Applegate, C. Yang, and J. A. Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005).
[CrossRef] [PubMed]

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

2004

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

2003

2002

2001

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

1999

1998

G. Häusler and M. W. Lindner, ""Coherence rader" and "spectral radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1997

1995

X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of fluid flow velocity by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).

1994

B. Thylefors and A. D. Négrel, "The global impact of glaucoma," Bull World Health Organ. 72, 323-326 (1994).

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1988

A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988).
[PubMed]

1984

I. P. Pollack, "Current concepts in laser iridotomy," Int. Ophthalmol. Clin. 24, 153-180 (1984).
[PubMed]

Akiba, M.

Applegate, B. E.

Araki, T.

Asrani, S.

M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008).
[CrossRef] [PubMed]

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

Bajraszewski, T.

Bardenstein, D.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Bellezza, A. J.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

Bouma, B.

Bouma, B. E.

Burgoyne, C. F.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

Cense, B.

Chalita, M. R.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Chan, K.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Z.

Choma, M. A.

Chong, C.

Dadzie, K. Y.

B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).

Dave, D.

de Boer, J.

de Boer, J. F.

C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, "Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging," Opt. Express 15, 7117-7125 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

Dejaco-Ruhswurm, I.

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

Desjardins, A.

Downs, J. C.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

Drexler, W.

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Endo, T.

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Fercher, A. F.

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Fujimoto, J. G.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G, E.

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Geitzenauer, W.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Gotzinger, E.

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).

Götzinger, E.

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hart, R. T.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, ""Coherence rader" and "spectral radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

Hee, T. F. M. R.

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hong, Y.

Hori, Y.

Huang, D.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Itoh, M.

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

Izatt, J.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Izatt, J. A.

M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008).
[CrossRef] [PubMed]

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

B. E. Applegate, C. Yang, and J. A. Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

Jiao, S.

Kaminski, S.

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Katada, C.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Kawana, K.

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Kerbage, C.

Kikuchi, T.

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

Kim, S.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leitgeb, R.

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Li, Y.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Lim, H.

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, ""Coherence rader" and "spectral radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Madjarova, V.

Madjarova, V. D.

Makita, S.

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Martin, N. F.

A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988).
[PubMed]

Matsumoto, M.

Michels, S.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Milner, T. E.

Miura, M.

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Mori, H.

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Morosawa, A.

Mujat, M.

Mutoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Nassif, N.

Nassif, N. A.

Négrel, A. D.

B. Thylefors and A. D. Négrel, "The global impact of glaucoma," Bull World Health Organ. 72, 323-326 (1994).

Nelson, J. S.

Ngrel, A. D.

B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).

Oh, W.

Oh, W. Y.

Ohashi, Y.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Oshika, T.

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Pararajasegaram, R.

B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).

Park, B.

Park, B. H.

Patil, C.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Pollack, I. P.

I. P. Pollack, "Current concepts in laser iridotomy," Int. Ophthalmol. Clin. 24, 153-180 (1984).
[PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Rao, K. D.

Rollins, A.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Rollins, A. M.

Rollins, A.M.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Roth, J.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Sakai, S.

Sakai, T.

Santiago, C.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

Sarunic, M.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

Sarunic, M. V.

M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008).
[CrossRef] [PubMed]

Schmetterer, L.

Schmidt-Erfurth, U.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Schuman, J. S.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

Schuman, W. G. S. J. S.

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schwartz, A. L.

A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988).
[PubMed]

Shiraishi, A.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Shishkov, M.

Shisida, K.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Skorpik, C.

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

Smith, S.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Stoica, G.

Sugawara, T.

Suh, J.-K. F.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

Sun, W.

Sutoh, Y.

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takahashi, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Tearney, G.

Tearney, G. J.

Thylefors, B.

B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).

B. Thylefors and A. D. Négrel, "The global impact of glaucoma," Bull World Health Organ. 72, 323-326 (1994).

Todorovic, M.

tzinger, E.

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Uno, T.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Usui, M.

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Vakoc, B.

Vakoc, B. J.

van Gemert, M. J. C.

Wang, L. V.

Wang, X. J.

Watanabe, Y.

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Weber, P. A.

A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988).
[PubMed]

Westphal, S. Y. V.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Westphal, V.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

White, B. R.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Xue, L.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Yamamoto, Y.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Yamanari, M.

M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

Yang, C.

Yasui, T.

Yasuno, Y.

M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Yatagai, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
[CrossRef] [PubMed]

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Yazdanfar, S.

Yun, S.

Yun, S. H.

Zawadzki, R. J.

Zheng, X.

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand.

K. Kawana, Y. Yasuno, T. Yatagai, and T. Oshika, "High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession," Acta Ophthalmol. Scand. 85, 684-685 (2007).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

M. R. Chalita, Y. Li, S. Smith, C. Patil, V. Westphal, A.M. Rollins, J. A. Izatt, and D. Huang, "High-speed optical coherence tomography of laser iridotomy," Am. J. Ophthalmol. 140, 1133-1136 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Arch. Ophthalmol.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[PubMed]

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

M. V. Sarunic, S. Asrani, and J. A. Izatt, "Imaging the Ocular Anterior Segment With Real-Time, Full-Range Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 537-542 (2008).
[CrossRef] [PubMed]

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, "Detailed Visualization of the Anterior Segment Using Fourier-Domain Optical Coherence Tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

A. L. Schwartz, N. F. Martin, and P. A. Weber, "Corneal decompensation after argon laser iridectomy," Arch. Ophthalmol. 106, 1572-1574 (1988).
[PubMed]

Y. Yamamoto, T. Uno, K. Shisida, L. Xue, A. Shiraishi, X. Zheng, and Y. Ohashi, "Demonstration of aqueous streaming through a laser iridotomy window against the corneal endothelium," Arch. Ophthalmol. 124, 387-393 (2006).
[CrossRef] [PubMed]

Bull World Health Organ.

B. Thylefors and A. D. Négrel, "The global impact of glaucoma," Bull World Health Organ. 72, 323-326 (1994).

B. Thylefors, A. D. Ngrel, R. Pararajasegaram, and K. Y. Dadzie, "Global data on blindness," Bull World Health Organ. 73, 115-121 (1995).

Cornea

M. Miura, H. Mori, Y. Watanabe,M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, "Three-dimensional optical coherence tomography of granular corneal dystrophy," Cornea 26, 373-374 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

C. Chong, A. Morosawa, and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Int. Ophthalmol. Clin.

I. P. Pollack, "Current concepts in laser iridotomy," Int. Ophthalmol. Clin. 24, 153-180 (1984).
[PubMed]

Inv. Ophthalmol. Vis. Sci.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Inv. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in Age-Related Macular Degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. K. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 48, 3551-3558 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. Häusler and M. W. Lindner, ""Coherence rader" and "spectral radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Glaucoma

M. Miura, K. Kawana, T. Iwasaki, T. Kikuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, "Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy," J. Glaucoma 17, 193-196 (2008).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, "Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging," Opt. Express 15, 7117-7125 (2007).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

B. E. Applegate, C. Yang, and J. A. Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005).
[CrossRef] [PubMed]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using threedimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef] [PubMed]

Y. Hong, S. Makita,M. Yamanari,M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538-7550 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita,M. Yamanari,M. Akiba,M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented PolarizationModulationMethod," Opt. Express 14, 6502-6515 (2006).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007).
[CrossRef] [PubMed]

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

Opt. Express.

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express. 12, 10217-10229 (2005).

Opt. Lett.

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of fluid flow velocity by optical Doppler tomography," Opt. Lett. 20, 1337-1339 (1995).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999).
[CrossRef]

S. Jiao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography," Opt. Lett. 27, 101-103 (2002).
[CrossRef]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation," Opt. Lett. 33, 1330-1332 (2008).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004).
[CrossRef] [PubMed]

Prog. Retin. Eye Res.

C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J.-K. F. Suh, and R. T. Hart, "The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage," Prog. Retin. Eye Res. 24, 39-73 (2005).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, W. G. S. J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, "Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis," J. Biomed. Opt. 13, 024003 (pages 9) (2008).
[CrossRef] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, "Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography," J. Biomed. Opt. 13, 034003 (pages 8) (2008).
[CrossRef] [PubMed]

C. K. Hitzenberger, E. Götzinger, and M. Pircher, "Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography," Bull Soc Belge Ophtalmol. 302, 153-168 (2006).

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (pages 10) (2008).
[CrossRef] [PubMed]

K. Kawana, T. Kiuchi, Y. Yasuno, and T. Oshika, "Evaluation of trabeculectomy blebs by using three-dimensional cornea and anterior segment optical coherence tomography," Ophthalmology, accepted to publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical scheme of 3D-CASOCT. HSL: high-speed wavelength-scanning light source, C: circulator, RM: reference mirror, OL: objective, and BR: balanced photoreceiver.

Fig. 2.
Fig. 2.

Optical scheme of 3D PS-CASOCT. HSL: high-speed wavelength-scanning light source, PC: fiber polarization controller, LP: linear polarizer, EOM: electro-optic polarization modulator, SMFC: single-mode fiber coupler, CD: a calibration detector used in the system-building and alignment process, PMC: polarization-maintaining fiber coupler, FPBS: fiber polarization beam splitter, and BR-H and BR-V: balanced photoreceivers for the horizontal and vertical polarization-detection channels respectively.

Fig. 3.
Fig. 3.

Patient 1: Trabeculotomy site. (a) A horizontal cross section extracted from a 3D OCT volume, and (b) a volume rendering of the same OCT volume. The white arrows in the images show the incision site of trabeculotomy. (c) A screen shot of 3D observation by VolViewOSA (VVO). The incision site is indicated by red arrows in horizontal, vertical and en-face cross sections. See View 1 .

Fig. 4.
Fig. 4.

Subject 2: Site of laser iridotomy. (a) and (b) show identical OCT volumes from different directions. T, S, N, and I indicate the temporal, superior, nasal, and inferior directions, respectively. The white arrows indicate the ablation hole (iridotomy channel) created by laser iridotomy. (c) An en-face photograph of the laser iridotomy site. The white arrow indicates the the iridotomy channel. (d) A screen shot of 3D observation by OSA ISP. The ablation site is indicated by red arrows in horizontal, vertical, and en-face cross sections. See View 2 .

Fig. 5.
Fig. 5.

Subject 3: (a) An en-face photograph of the filtering bleb. (b) A representative horizontal tomography of the filtering bleb extracted from a 3D PD-OCT volume acquired 1 week after the surgery. The asterisk (*) indicates a fluid pool. (c) A corresponding φ-OCT to that shown in (b) taken from a 3D φ-OCT volume. The green arrow indicates the strong birefringence of the sclera, and the red arrow indicates the non-birefringent appearance of the conjunctiva. (d), (e) Screen shots of 3D interactive observations of PD-OCT and φ-OCT by OSA ISP. See View 3 for PD-OCT and View 4 for φ-OCT.

Fig. 6.
Fig. 6.

Second examination of subject 4 2: (a) An en-face photograph of the filtering bleb. (b) A representative horizontal tomography of the filtering bleb extracted from a 3D PD-OCT volume taken 3 years after the surgery. The asterisk (*) indicates the fluid pool. (c) The corresponding φ-OCT. The red arrow indicates moderate birefringence around the anterior inner wall of the fluid pool. (d), (e) Screen shots of 3D interactive observations of PD-OCT and φ-OCT by OSA ISP. See View 5 for PD-OCT and View 6 for φ-OCT.

Fig. 7.
Fig. 7.

Subject 5: (a) An en-face photograph of the filtering bleb. (b) A representative horizontal tomography of the filtering bleb extracted from a 3D I-OCT volume taken 4 years after the surgery. The red arrow indicates the remnant of the bleb. (c) The corresponding tomographic image taken from the corresponding φ-OCT volume. The green arrow indicates the position indicated by the green arrow in (b). (d), (e) Screen shots of 3D interactive observations of PD-OCT and φ-OCT by OSA ISP. See View 7 for PD-OCT and View 8 for φ-OCT.

Fig. 8.
Fig. 8.

Subject 6: The ACA of a normal subject. (a) PD-OCT, (b) φ-OCT, and (c) axis-orientation OCT. (d), (e), (f) Screen shots of 3D interactive observations of PD-OCT, φ-OCT and axis-orientation OCT by OSA ISP. The position of scleral spur (SS) and trabecular meshwork (TM) are indicated by red arrows and yellow curves. See View 9 for PD-OCT, View 10 for φ-OCT, and View 11 for axis-orientation OCT.

Fig. 9.
Fig. 9.

Examples of LabVIEWprograms. (a) A program to read a complex value at a single point in an OCT volume. (b) A program to read a single horizontal cross section from the volume.

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Tables (2)

Tables Icon

Table 1. The list of the subjects involved in this study. L/R indicates which eye was involved (left or right), pre- and post-IOP indicate the pre- and postoperative IOP in mm Hg. SIG, PAC, NVG, and POAG are steroid-induced glaucoma, primary angle closure, neovascular glaucoma, and primary open angle glaucoma, respectively. Age indicates the age of the patient at the time of surgery, except for subject 6, for whom it indicates the age on the day of OCT examination. F stands for female and M for male.

Tables Icon

Table 2. Detailed parameters of scanning. The number (#) of voxels, volume size, and voxels size are represented as horizontal × vertical × depth. AQT is the acquisition time of OCT.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ = { ϕ : 0 ϕ < π 2 π ϕ : π ϕ < 2 π
Data position = ( Δ x × Δ z × y + Δ z × x + z ) × 8 bytes ,
J = ( H 0 * H 1 * α H 0 * H 1 * α V 0 * V 1 * α V 0 * V 1 * α ) ,

Metrics