Abstract

A digital frequency ramping method (DFRM) is proposed to improve the signal-to-noise ratio (SNR) of Doppler flow imaging in Fourier -domain optical coherence tomography (FDOCT). To examine the efficacy of DFRM for enhancing flow detection, computer simulation and tissue phantom study were conducted for phase noise reduction and flow quantification. In addition, the utility of this technique was validated in our in vivo clinical bladder imaging with endoscopic FDOCT. The Doppler flow images reconstructed by DFRM were compared with the counterparts by traditional Doppler FDOCT. The results demonstrate that DFRM enables real-time Doppler FDOCT imaging at significantly enhanced sensitivity without hardware modification, thus rendering it uniquely suitable for endoscopic subsurface blood flow imaging and diagnosis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. G. Haeusler, and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  4. Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  6. Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
    [CrossRef] [PubMed]
  7. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  8. P. H. Tran, D. S. Mukai, M. Brenner, and Z. P. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004).
    [CrossRef] [PubMed]
  9. U. Seitz, "In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus," Endoscopy 51, Ab94-Ab94 (2000).
  10. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  11. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  13. J. K. Barton, A. J. Welch, and J. A. Izatt, "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography," Opt. Express 3, 251-256 (1998).
    [CrossRef] [PubMed]
  14. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  15. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
    [CrossRef] [PubMed]
  16. Y. C. Ahn, W. Jung, and Z. P. Chen, "Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography," Opt. Lett. 32, 1587-1589 (2007).
    [CrossRef] [PubMed]
  17. R. K. K. Wang, and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006).
    [CrossRef] [PubMed]
  18. Y. L. Chen, P. Willett, and Q. Zhu, "Frequency tracking in optical Doppler tomography using an adaptive notch filter," J. Biomed. Opt. 12 (2007).
    [CrossRef] [PubMed]
  19. H. W. Ren and X. D. Li, "Clutter rejection filters for optical Doppler tomography," Opt. Express 14, 6103-6112 (2006).
    [CrossRef] [PubMed]
  20. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-4097 (2007).
    [CrossRef] [PubMed]
  21. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time Domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008).
    [CrossRef] [PubMed]
  22. Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
    [CrossRef] [PubMed]
  23. Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-12361 (2008).
    [CrossRef] [PubMed]
  24. R. K. K. Wang, and S. Hurst, "Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mu m wavelength," Opt. Express 15, 11402-11412 (2007).
    [CrossRef] [PubMed]
  25. L. An and R. K. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt. Express 16, 11438-11452 (2008).
    [CrossRef] [PubMed]
  26. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]

2008 (3)

2007 (4)

2006 (3)

2004 (1)

2003 (3)

2000 (3)

1999 (1)

1998 (2)

G. Haeusler, and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. K. Barton, A. J. Welch, and J. A. Izatt, "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography," Opt. Express 3, 251-256 (1998).
[CrossRef] [PubMed]

1997 (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ahn, Y. C.

An, L.

Bachmann, A. H.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Bajraszewski, T.

Barton, J. K.

Belabas, N.

Blatter, C.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Boppart, S. A.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Brenner, M.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y. L.

Y. L. Chen, P. Willett, and Q. Zhu, "Frequency tracking in optical Doppler tomography using an adaptive notch filter," J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

Chen, Z. P.

Davis, A. M.

de Boer, J. F.

Dorrer, C.

Drexler, W.

Du, C. W.

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gruber, A.

Haeusler, G.

G. Haeusler, and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hanson, S. R.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hurst, S.

Ippen, E. P.

Izatt, J. A.

Jacques, S. L.

Joffre, M.

Jung, W.

Kartner, F. X.

Kowalczyk, A.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Lee, C. S. D.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Leitgeb, R. A.

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Li, X. D.

Likforman, J. P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Haeusler, and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Liu, J. X.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Ma, Z.

Ma, Z. H.

Malekafzali, A.

Michaely, R.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Milner, T. E.

Morgner, U.

Mukai, D. S.

Nassif, N.

Nelson, J. S.

Pan, Y. T.

Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Pitris, C.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ren, H. W.

Saxer, C.

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Seitz, U.

U. Seitz, "In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus," Endoscopy 51, Ab94-Ab94 (2000).

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Tao, Y. K.

Tearney, G. J.

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Tran, P. H.

vanGemert, M. J. C.

Villiger, M. L.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Waltzer, W. C.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Wang, H. Y.

Wang, R. K.

Wang, R. K. K.

Wang, X. J.

Wang, Z. G.

Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Welch, A. J.

White, B. R.

Willett, P.

Y. L. Chen, P. Willett, and Q. Zhu, "Frequency tracking in optical Doppler tomography using an adaptive notch filter," J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

Wojtkowski, M.

Wu, Z. L.

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Xiang, S. H.

Xie, H. K.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Yuan, Z. J.

Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhao, Y. H.

Zhu, Q.

Y. L. Chen, P. Willett, and Q. Zhu, "Frequency tracking in optical Doppler tomography using an adaptive notch filter," J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

Endoscopy (1)

U. Seitz, "In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus," Endoscopy 51, Ab94-Ab94 (2000).

J. Biomed. Opt. (2)

G. Haeusler, and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Y. L. Chen, P. Willett, and Q. Zhu, "Frequency tracking in optical Doppler tomography using an adaptive notch filter," J. Biomed. Opt. 12 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (10)

H. W. Ren and X. D. Li, "Clutter rejection filters for optical Doppler tomography," Opt. Express 14, 6103-6112 (2006).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-4097 (2007).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time Domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008).
[CrossRef] [PubMed]

Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-12361 (2008).
[CrossRef] [PubMed]

R. K. K. Wang, and S. Hurst, "Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mu m wavelength," Opt. Express 15, 11402-11412 (2007).
[CrossRef] [PubMed]

L. An and R. K. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt. Express 16, 11438-11452 (2008).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

J. K. Barton, A. J. Welch, and J. A. Izatt, "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography," Opt. Express 3, 251-256 (1998).
[CrossRef] [PubMed]

Opt. Lett. (6)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other (3)

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Flow chart of DFRM. The spectral interferometric signal Ii(k) was first combined with its Hilbert transform I*i(k) to generate a target signal Pi(k) with arbitrary phase shift v0iτ along the lateral direction. Thereafter, a lateral Hilbert transform was performed to compute Pi(k)’s analytic signal Hix(k). By applying iFFT to Hix(k) to reconstruct the image Ri(z), the signal is separated to positive or negative part of Ri(z) depending on the sign of their lateral phase modulation frequency.

Fig. 2.
Fig. 2.

Illustration of DFRM for bidirectional flow quantification (a: “+” flow, b: “-” flow). vf1: a positive flow, vf2: a negative flow, v0 digital Doppler frequency shift ramped from −π to π. Δvf: net frequency term Δvf =(vf -v0 ). i: Δvf =0 at v0(i)=vf1; j: Δvf =0 at v0(j)=vf2. Green arrows: phase jump dues to periodic 2π phase ramping.

Fig. 3.
Fig. 3.

A sketch of a fiberoptic Spectral-domain OCT setup, in which the sample arm was connected to a handheld stereoscope for phantom study or a MEMS-based OCT endoscope for in vivo imaging. BBS: broadband source (λ0=1320nm, ΔλFWHM=90nm, P=18mW); LD: aiming laser diode (λ=532nm); CM: fiberoptic collimator, FPC: fiberoptic polarization controller. 2D OCT imaging rate: ~8pfs; Spatial resolutions: 9μm axially × 12μm laterally.

Fig. 4.
Fig. 4.

A comparison between PSM and DFRM for reconstruction of computer simulated flows at different sizes and velocities. Panels (A) and (B) are the results of low-velocity (vf,max =0.2π) and high-velocity (vf,max =0.8π) flows with phase noise ϕ n(i, Δz) proportional to their velocity. Rows (a, b, c): flows with radii of 50-, 35- and 20-pixels, respectively. Columns (I, II, III): noise-free flow inputs, flows reconstructed using PSM and DFRM, respectively. The images from both PSM and DFRM methods were normalized by the maximum value and displayed in log scale with a pseudo color bar from -30dB to 0dB

Fig. 5.
Fig. 5.

Graphic illustration of DFRM for flow quantification. Rows (a, b) show the DFRM results for v0(i+1)=0.4π and v0(i)=0.3π. Columns (I, II) show the positive and negative parts computed from Eq. (8), and columns (III, IV) are the ratio and the binarized ratio images, respectively. The final ring-shaped image shows the area having a velocity profile within the range of (0.3 π, 0.4π).

Fig. 6.
Fig. 6.

A comparison between PSM and DFRM for quantitative reconstruction of a computer simulated flow (r50, 0.8π). Row (b): plots the flow profile along the central lines in row (a). Columns (I, II, III, IV): noise-free input circular flow, flows quantified by PSM and DFRM with Δv0=0.02π, 0.01π, respectively.

Fig. 7.
Fig. 7.

SNR comparison between PSM and DFRM for quantitative reconstruction of computer simulated flow at different velocities, e.g., vf,max , from 0.1π to 0.9π. The step size of DFRM was set to 0.02 vf,max .

Fig. 8.
Fig. 8.

Graphic illustration for extending the dynamic range of flow velocity from π to 10π using PSM (a) and DFRM with thresholding at 0.1π (b). Both images were normalized by their peak values and displayed logarithmically in pseudo color ranging from -30dB to 0dB. DFRM is able to clearly resolve all 5 concentric rings resulted from phase wrapping of the fast flow, whereas PSM barely differentiate them from the background noise.

Fig. 9.
Fig. 9.

Experimental validation using tissue flow phantom. Column (I): structural FDOCT image of flow in a ϕ0.50mm translucent conduit using 1% intralipid solution (μs≈2.4cm-1); columns (II, III): cross-sectional DOCT images and median velocity profiles quantified by PSM and DFRM (Δv0=0.02π), respectively.

Fig. 10.
Fig. 10.

Endoscopic FDOCT images of human bladder in vivo. a): structural OCT image, b), c) Doppler OCT images reconstructed by PSM and DFRM (single frequency thresholding at 0.2π), respectively. U: urothelium, LP: lamina propria, M: muscularis. White arrows: blood vessels (BVs); blue arrows: vertical stripes (phase noises) induced by bladder motion or surgeon’s handshaking. Both PSM and DFRM images were normalized by their peak value and displayed in log scale. Obviously, DFRM was able to retrieve ~6 more minute flows missed by PSM.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I i ( k , Δ z ) = 2 I r I s , i ( Δ z ) S ( k ) cos [ 2 k Δ z + ϕ + ( v s + v f ) · ] , ( i = 1,2 , , N x )
I i * ( k , Δ z ) = H [ I i ( k , Δ z ) ]
I i * ( k , Δ z ) = A i ( k , Δ z ) sin [ 2 k Δ z + ϕ + ( v s + v f ) · ] , ( i = 1,2 , , N x )
P i ( k , Δ z ) = I i ( k , Δ z ) cos ( v 0 ) + I i * ( k , Δ z ) sin ( v 0 )
P i ( k , Δ z ) = A i ( k , Δ z ) cos [ 2 k Δ z + ϕ + ( v s + v f v 0 ) · ] , ( i = 1,2 , , N x )
H i x ( k , Δ z ) = A i ( k , Δ z ) { cos [ 2 k Δ z + ϕ + Δ v f , 0 ] + j sin [ 2 k Δ z + ϕ + Δ v f , 0 ] } , ( i = 1 , , N x )
H i x ( k , Δ z ) = A i ( k , Δ z ) { cos [ 2 k Δ z + ϕ + Δ v b , 0 ] + j sin [ 2 k Δ z + ϕ + Δ v b , 0 ] } , ( i = 1 , , N x )
R i ( Δ z ) = iFFT [ H i x ( k , Δ z ) ]
I i ( k , Δ z ) = cos [ 2 k Δ z + ϕ n ( i , Δ z ) + v f · ] , ( i = 1,2 , , N x )
v 0 ( i ) = v 0 + i · Δ v 0 , ( i = 1,2 , , N )

Metrics