Abstract

Based on the hyperbolic dispersion relation for a strongly anisotropic medium, we propose a kind of pyramid-shaped hyperlenses (PSHLs) consisting of multilayer of planar silver and dielectric films for three-dimensional (3D) subdiffraction imaging at optical wavelengths. Numerical simulations by using the finite difference time domain method demonstrate that the PSHLs can resolve eight point sources with nanoscale separations distributed in 3D domain (with different hexahedron structures). Our results imply the potential applications of the hyperlens in real-time biomolecular imaging, nanolithography, and sensing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 237, 510 (1972).
    [CrossRef]
  2. J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997).
    [CrossRef]
  3. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966 (2000).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
    [CrossRef] [PubMed]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  6. S. Durant, Z. Liu, J. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383 (2006).
    [CrossRef]
  7. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
    [CrossRef] [PubMed]
  8. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
    [CrossRef] [PubMed]
  9. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
    [CrossRef] [PubMed]
  10. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  11. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  12. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007).
    [CrossRef]
  13. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
    [CrossRef] [PubMed]
  14. L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008).
    [CrossRef]
  15. J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
    [CrossRef]
  16. P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
    [CrossRef]
  17. Y. Liu, G. Bartal, X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express 16, 15439 (2008).
    [CrossRef] [PubMed]
  18. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
    [CrossRef] [PubMed]
  19. S. Feng and J. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006).
    [CrossRef] [PubMed]
  20. D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 7, 162 (2005).
    [CrossRef]
  21. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  23. J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (second Edition), part. 2. pp. 208-211.
  24. M. Born and E. Wolf, Principles of Optics (6th edition, Pergamon, Oxford, 1980).

2008 (3)

L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008).
[CrossRef]

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Y. Liu, G. Bartal, X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express 16, 15439 (2008).
[CrossRef] [PubMed]

2007 (7)

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
[CrossRef] [PubMed]

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
[CrossRef] [PubMed]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007).
[CrossRef]

2006 (6)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
[CrossRef]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

S. Feng and J. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

2005 (2)

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 7, 162 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966 (2000).
[CrossRef] [PubMed]

1997 (1)

J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997).
[CrossRef]

1972 (2)

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 237, 510 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Alekseyev, L. V.

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
[CrossRef] [PubMed]

Ash, E. A.

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 237, 510 (1972).
[CrossRef]

Bartal, G.

Belov, P.

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

Belov, P. A.

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Chen, C. C.

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Chen, J. X.

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Chen, L.

L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Durant, S.

Elson, J.

Engheta, N.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Feng, S.

Fischer, U. C.

J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997).
[CrossRef]

Fuchs, H.

J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997).
[CrossRef]

Hao, Y.

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Hu, J. G.

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Ikonen, P.

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

Jacob, Z.

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Koglin, J.

J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997).
[CrossRef]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Liu, Y.

Liu, Z.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

Liu, Z. W.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Lu, Y. H.

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Meyer-Arendt, J. R.

J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (second Edition), part. 2. pp. 208-211.

Ming, H.

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Narimanov, E.

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006).
[CrossRef] [PubMed]

Nicholls, G.

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 237, 510 (1972).
[CrossRef]

Pendry, J. B.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Sarychev, A.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 7, 162 (2005).
[CrossRef]

Shvets, G.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Simovski, C.

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

Smith, D. R.

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 7, 162 (2005).
[CrossRef]

Steele, J.

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Trendafilov, S.

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Tretyakov, S.

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Wang, G. P.

L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008).
[CrossRef]

Wang, P.

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

Xiong, Y.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Zhang, X.

Y. Liu, G. Bartal, X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express 16, 15439 (2008).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

Zhou, X. Y.

L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008).
[CrossRef]

Appl. Phys B (1)

L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008).
[CrossRef]

Appl. Phys. Lett (1)

P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008).
[CrossRef]

J. Opt. Soc. Am (1)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett (2)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007).
[CrossRef] [PubMed]

Nature (London) (1)

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 237, 510 (1972).
[CrossRef]

New J. Phys (1)

D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 7, 162 (2005).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (4)

P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997).
[CrossRef]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Phys. Rev. Lett (2)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966 (2000).
[CrossRef] [PubMed]

G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007).
[CrossRef] [PubMed]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Other (2)

J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (second Edition), part. 2. pp. 208-211.

M. Born and E. Wolf, Principles of Optics (6th edition, Pergamon, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(Color online) Hyperbolic dispersion relation (green curve), wave vectors (solid red arrows), and Poynting vectors (dashed red arrows) for an anisotropic medium.

Fig. 2.
Fig. 2.

(Color online) Scheme of PSHLs for 3D subdiffraction imaging. Side view of the structure (a) made of two symmetrical ones (b). (c) Spatial distributions of eight points sources (black) and their images (red), α (=< BAO) and β (=< AOA’), slope angle and the dihedral angle of the opposite planes. (d) Amplified view of the spatial distributions of eight point sources (1-8) and their images (1’-8’).

Fig. 3.
Fig. 3.

(Color online) (a) Scheme of the PSHLs, where α and β are set at 45° and 120°, respectively, and lOA is 346 nm. Amplitude distributions of magnetic field |Hz | on the output surfaces of the PSHLs as four object points 1, 3, 5, and 7 (b) and 1, 2, 3, and 4 (c) are placed on the inner surfaces of the PSHLs as shown in Figs. 2(c)-(d).

Fig. 4.
Fig. 4.

(Color online) Calculated gray distributions (|Hz |) of the images of eight point sources as shown in Fig. 2. (a)-(b) with and (c)-(d) without PHSLs. (a) and (c), Side view. (b) and (d), Top view.

Fig. 5.
Fig. 5.

(Color online) Dependence of optical modulations M 51, M 56, and M 57 (∇) and imaging distances l 5′1′ l 5′6′ , and l 5′7′ (∘) on the object distances l 51 [(a),(d)], l 56 [(b),(e)], and l 57 [(c), (f)] as (a)-(c) α=45° but β changes from 80° (—) to 100° (——) and 120° (— ∙ —) and (d)-(f) β=90° but α from 60° (—) to 45° (——) and 30° (— ∙ —), respectively.

Fig. 6.
Fig. 6.

(Color online) Calculated gray distributions (∣Hz ∣) of images on the output surfaces of the PSHLs [(a), (c)] and the corresponding profiles of ∣H2 distributions [(b), (d)] along the straight line (1’5’) as point 1 is 20 nm, 70 nm away from the inner surface of the system, respectively, while all the other parameters are the same as that of Fig. 4.

Fig. 7.
Fig. 7.

(Color online) (a) Scheme of the PSHLs, where α is set at 45°, and β is set at 80° [(b), (c)], 60° [(d), (e)], respectively, and lOA is 346 nm. [(b), (d)] Calculated gray distributions (∣Hz ∣) of images on one output surface of the PSHLs and [(c), (e)] the orresponding profiles of ∣H2 distributions along the straight line (1’5’) as β is set at 80° and 60°, respectively, while all the other parameters are the same as that of Fig.4. In the calculations, we keep the eight point sources shaping a regular hexahedron with side length 140 nm.

Fig. 8.
Fig. 8.

(Color online) Schematic of two point sources (1 and 5) are placed at the inner surface of a quarter of PSHLs shown in Fig.2. The line connecting points 1 and 5 is perpendicular to OA.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε θ = d 1 ε m + d 2 ε d d 1 + d 2 , ε r = ( d 1 + d 2 ) ε m ε d d 1 ε m + d 2 ε d
{ l 1 5 = l 15 / cos ( α ) = ( l O 1 l O 5 ) / cos ( α ) l 1 3 = 2 l O 1 sin ( β / 2 ) + 2 ( l OA l O 1 ) tan ( α ) cos ( β / 2 ) l 13 = 2 l O 1 sin ( β / 2 ) l 5 7 = 2 l O 5 sin ( β / 2 ) + 2 ( l OA l O 5 ) tan ( α ) cos ( β / 2 ) l 57 = 2 l O 5 sin ( β / 2 )
{ P 15 = l 1 5 / l 15 = 1 / cos ( α ) P 12 = l 1 3 / l 13 = 1 + ( l OA l O 1 ) tan ( α ) c tan ( β / 2 ) / l O 1 P 56 = l 5 7 / l 57 = 1 + ( l OA l O 5 ) tan ( α ) c tan ( β / 2 ) / l O 5

Metrics