Abstract

Optical metrics relating to metallic absorption in representative plasmonic systems are surveyed, with a view to developing heuristics for optimizing performance over a range of applications. We use the real part of the permittivity as the independent variable; consider strengths of particle resonances, resolving power of planar lenses, and guiding lengths of planar waveguides; and compare nearly-free-electron metals including Al, Cu, Ag, Au, Li, Na, and K. Whilst the imaginary part of metal permittivity has a strong damping effect, field distribution is equally important and thus factors including geometry, real permittivity and frequency must be considered when selecting a metal. Al performs well at low permittivities (e.g. sphere resonances, superlenses) whereas Au & Ag only perform well at very negative permittivities (shell and rod resonances, LRSPP). The alkali metals perform well overall but present engineering challenges.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  2. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
    [CrossRef]
  3. D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
    [CrossRef] [PubMed]
  4. N. Engheta, A. Salandrino, and A. Alu, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95, 095504–095504 (2005).
    [CrossRef] [PubMed]
  5. N. Engheta, “Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials,” Science 317, 1698–1702 (2007).
    [CrossRef] [PubMed]
  6. Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
    [CrossRef] [PubMed]
  7. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin Heidelberg, 1995).
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).
  9. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
    [CrossRef]
  10. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material,” J. Phys. Condens. Matter (2009).
    [CrossRef] [PubMed]
  11. J. H. Weaver and H. P. R. Frederikse, Optical properties of selected elements 82 ed. (CRC Press, Boca Raton, FL, 2001).
  12. T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KC1 single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku  46, 49–56 (1997).
  13. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 2004).
  14. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [CrossRef] [PubMed]
  15. M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, “Optimisation of absorption efficiency for varying dielectric spherical nanoparticles,” in International Conference on Nanoscience and Nanotechnology, 2006. ICONN ’06., 2006),
  16. M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
    [CrossRef]
  17. F. Wang and Y. R. Shen, “General Properties of Local Plasmons in Metal Nanostructures,” Phys. Rev. Lett. 97, 206806–206804 (2006).
    [CrossRef] [PubMed]
  18. U. Evra and D. J. Bergman, “Lifetime of nanoplasmonic states,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 63240H-63212.
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef] [PubMed]
  20. N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
    [CrossRef]
  21. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504–123507 (2006).
    [CrossRef]
  22. G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313–632318.
  23. S. Asano and G. Yamamoto, “Light-Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29–49 (1975).
    [PubMed]
  24. R. Gans, “Ãœber die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342, 881–900 (1912).
    [CrossRef]
  25. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  26. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
    [CrossRef]
  27. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef] [PubMed]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
    [CrossRef]
  29. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
    [CrossRef] [PubMed]
  30. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  31. K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  32. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
    [CrossRef] [PubMed]
  33. S. A. Ramakrishna and J. B. Pendry, “The asymmetric lossy near-perfect lens,” J. Mod Opt. 49, 1747–1762 (2002).
    [CrossRef]
  34. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
    [CrossRef] [PubMed]
  35. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).
  36. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
    [CrossRef]
  37. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single-and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23, 461–467 (2006).
    [CrossRef]
  38. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
    [CrossRef]
  39. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [CrossRef] [PubMed]
  40. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
    [CrossRef] [PubMed]
  41. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
    [CrossRef]
  42. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  43. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
    [CrossRef]
  44. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15, 10869–10877 (2007).
    [CrossRef] [PubMed]
  45. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, 2007).
  46. M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.
  47. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
    [CrossRef]

2009 (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material,” J. Phys. Condens. Matter (2009).
[CrossRef] [PubMed]

2008 (4)

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
[CrossRef]

2007 (9)

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15, 10869–10877 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[CrossRef]

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
[CrossRef] [PubMed]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

N. Engheta, “Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef] [PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
[CrossRef] [PubMed]

2006 (8)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[CrossRef]

F. Wang and Y. R. Shen, “General Properties of Local Plasmons in Metal Nanostructures,” Phys. Rev. Lett. 97, 206806–206804 (2006).
[CrossRef] [PubMed]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504–123507 (2006).
[CrossRef]

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single-and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23, 461–467 (2006).
[CrossRef]

2005 (3)

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005).
[CrossRef] [PubMed]

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alu, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95, 095504–095504 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (3)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

2002 (2)

S. A. Ramakrishna and J. B. Pendry, “The asymmetric lossy near-perfect lens,” J. Mod Opt. 49, 1747–1762 (2002).
[CrossRef]

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1997 (1)

T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KC1 single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku  46, 49–56 (1997).

1975 (1)

1969 (1)

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
[CrossRef]

1912 (1)

R. Gans, “Ãœber die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342, 881–900 (1912).
[CrossRef]

Abajo, F. J. G. de

G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313–632318.

Aizpurua, J.

G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313–632318.

Alekseyev, L. V.

Alu, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95, 095504–095504 (2005).
[CrossRef] [PubMed]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material,” J. Phys. Condens. Matter (2009).
[CrossRef] [PubMed]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
[CrossRef]

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

Asano, S.

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

U. Evra and D. J. Bergman, “Lifetime of nanoplasmonic states,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 63240H-63212.

Berini, P.

Blaber, M.

M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, “Optimisation of absorption efficiency for varying dielectric spherical nanoparticles,” in International Conference on Nanoscience and Nanotechnology, 2006. ICONN ’06., 2006),

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material,” J. Phys. Condens. Matter (2009).
[CrossRef] [PubMed]

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

Blaikie, R. J.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 2004).

Bones, P. J.

Bozhevolnyi, S. I.

Brongersma, M. L.

Bryant, G. W.

G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313–632318.

Buckley, R.

Catrysse, P. B.

Cortie, M. B.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
[CrossRef]

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[CrossRef]

M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, “Optimisation of absorption efficiency for varying dielectric spherical nanoparticles,” in International Conference on Nanoscience and Nanotechnology, 2006. ICONN ’06., 2006),

Durant, S.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alu, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95, 095504–095504 (2005).
[CrossRef] [PubMed]

Evra, U.

U. Evra and D. J. Bergman, “Lifetime of nanoplasmonic states,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 63240H-63212.

Fang, N.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material,” J. Phys. Condens. Matter (2009).
[CrossRef] [PubMed]

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
[CrossRef]

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, “Optimisation of absorption efficiency for varying dielectric spherical nanoparticles,” in International Conference on Nanoscience and Nanotechnology, 2006. ICONN ’06., 2006),

Frederikse, H. P. R.

J. H. Weaver and H. P. R. Frederikse, Optical properties of selected elements 82 ed. (CRC Press, Boca Raton, FL, 2001).

Fukui, M.

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Gans, R.

R. Gans, “Ãœber die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342, 881–900 (1912).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Gramotnev, D. K.

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Hagihara, T.

T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KC1 single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku  46, 49–56 (1997).

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

Haraguchi, M.

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Harris, N.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
[CrossRef]

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, “Optimisation of absorption efficiency for varying dielectric spherical nanoparticles,” in International Conference on Nanoscience and Nanotechnology, 2006. ICONN ’06., 2006),

Hayashiuchi, Y.

T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KC1 single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku  46, 49–56 (1997).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 2004).

Jacob, Z.

Kreibig, U.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin Heidelberg, 1995).

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Lee, H.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, 2007).

Melville, D. O. S.

Miller, C. M.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
[CrossRef] [PubMed]

Moore, C. P.

Mulvaney, P.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504–123507 (2006).
[CrossRef]

Narimanov, E.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Ogawa, T.

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Okada, T.

T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KC1 single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku  46, 49–56 (1997).

Okamoto, T.

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).

S. A. Ramakrishna and J. B. Pendry, “The asymmetric lossy near-perfect lens,” J. Mod Opt. 49, 1747–1762 (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Pile, D. F. P.

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[CrossRef]

Polman, A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Prescott, S. W.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504–123507 (2006).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).

S. A. Ramakrishna and J. B. Pendry, “The asymmetric lossy near-perfect lens,” J. Mod Opt. 49, 1747–1762 (2002).
[CrossRef]

Romero, I.

G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313–632318.

Ruppin, R.

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
[CrossRef]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95, 095504–095504 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Selker, M. D.

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Shen, Y. R.

F. Wang and Y. R. Shen, “General Properties of Local Plasmons in Metal Nanostructures,” Phys. Rev. Lett. 97, 206806–206804 (2006).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Søndergaard, T.

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Sun, C.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[CrossRef]

Verhoeven, J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin Heidelberg, 1995).

Wang, F.

F. Wang and Y. R. Shen, “General Properties of Local Plasmons in Metal Nanostructures,” Phys. Rev. Lett. 97, 206806–206804 (2006).
[CrossRef] [PubMed]

Weaver, J. H.

J. H. Weaver and H. P. R. Frederikse, Optical properties of selected elements 82 ed. (CRC Press, Boca Raton, FL, 2001).

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).

Xiong, Y.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Yamamoto, G.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Zia, R.

Annalen der Physik (1)

R. Gans, “Ãœber die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342, 881–900 (1912).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110–113113 (2008).
[CrossRef]

Gold Bulletin (1)

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells,” Gold Bulletin 41, 5–14 (2008).
[CrossRef]

J. Appl. Phys. (1)

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504–123507 (2006).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

J. Mod Opt. (2)

S. A. Ramakrishna and J. B. Pendry, “The asymmetric lossy near-perfect lens,” J. Mod Opt. 49, 1747–1762 (2002).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod Opt. 50, 1419–1430 (2003).

J. Opt. A (1)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material,” J. Phys. Condens. Matter (2009).
[CrossRef] [PubMed]

Nano. Lett. (2)

D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, “A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods,” Nano. Lett. 7, 3808–3812 (2007).
[CrossRef] [PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano. Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 379 (2008).
[CrossRef]

Nature Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2007).
[CrossRef]

Opt. Express (6)

Phys. Lett. A (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. Lett. (4)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, “General Properties of Local Plasmons in Metal Nanostructures,” Phys. Rev. Lett. 97, 206806–206804 (2006).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alu, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95, 095504–095504 (2005).
[CrossRef] [PubMed]

Physica B (1)

M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, “Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold,” Physica B 394, 184–187 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

N. Engheta, “Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[CrossRef]

Other (10)

J. H. Weaver and H. P. R. Frederikse, Optical properties of selected elements 82 ed. (CRC Press, Boca Raton, FL, 2001).

T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KC1 single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku  46, 49–56 (1997).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 2004).

U. Evra and D. J. Bergman, “Lifetime of nanoplasmonic states,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 63240H-63212.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin Heidelberg, 1995).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).

M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, “Optimisation of absorption efficiency for varying dielectric spherical nanoparticles,” in International Conference on Nanoscience and Nanotechnology, 2006. ICONN ’06., 2006),

G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, “Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313–632318.

S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, 2007).

M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, “Characteristics of plasmonic waveguides and nonlinear metallic particles,” in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401–632410.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Permittivity functional for the chosen metals and two Drude models for comparison. Example plasmonic systems are overlaid, showing the real part of permittivity required for operation.

Fig. 2.
Fig. 2.

Nanoparticle resonance quality factor for various metals. Note that since Q is independent of background permittivity, compensation for background requires only proportional scaling of the independent variable.

Fig. 3.
Fig. 3.

Approximate dipole strength of low-frequency core-shell modes (left, from Eq. 4), and ellipsoids (right, Eq. 7) embedded in vacuum. The approximation is accurate in the region shown, except for Cu at small permittivities.

Fig. 4.
Fig. 4.

Thickness:resolution ratio for (a) single and (b) multilayer planar plasmonic lenses (higher is better). Note that since the operating condition is independent of geometry, scaling for background consists of choosing a particular value of the independent variable.

Fig. 5.
Fig. 5.

Approximate decay quality of high frequency modes, from single-interface SPP (a) using Eq. (15) and long-range film plasmon using Eq. 2 from [44] (b).

Fig. 6.
Fig. 6.

Approximate decay quality of low frequency short range modes, film short range (a) using Eq. 2 from [44] and gap (b) using Eq. 4 from [44]. Note that due to relatively high real wavevector, the absolute propagation lengths are very low.

Tables (1)

Tables Icon

Table 1. of peak dipole strengths for spherical shells in vacuum, with required parameters.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ε = [ ( 1 ε ) 3 ( γ ω p ) 2 ( 1 ε ) ] 1 2
U ˙ = metal 1 2 ω ε 0 ε E 2 dV
Q ω Δ ω = ω U U ˙ ω 2 ε d ε
α = iV 9 ε b ε ( ε + ε c ) ( 2 ε + ε c ) 2 ε ( ε c + 2 ε b ) ( [ ε ] 2 ε c ε b )
α iV 9 ε b ε ( ε c + 2 ε b ) ε when ε ε b , ε c
α iV 9 ε c ε 2 ( ε c + 2 ε b ) ε when ε ε b , ε c
α iV ( ε ε b ) 2 ε ε b
α iV [ ε ] 2 ε ε b when ε ε b ,
α iV 4 ε b ε = iV 4 ε ε when ε = ε b ,
α iV ε b ε when ε ε b .
1 Δ = k max 2 π ~ 1 2 πd ln [ ε 2 ε ]
1 Δ ~ ε 2 πd ε
A { 1 r 2 t 2 : k t < k 2 { r } : k t > k ,
k t ω c [ ε ε b ε + ε b ] 1 2 [ 1 + i ε ε b 2 ε ( ε + ε b ) ]
k t ω c ε b [ 1 + i ε ( ω d ε b 2 ε ) 2 ] .
k t 2 ε b ε d ε 2 [ 1 i ε ε ]

Metrics