Abstract

Quantum-optical coherence tomography (Q-OCT) is an interferometric technique for axial imaging offering several advantages over conventional methods. Chirped-pulse interferometry (CPI) was recently demonstrated to exhibit all of the benefits of the quantum interferometer upon which Q-OCT is based. Here we use CPI to measure axial inter-ferograms to profile a sample accruing the important benefits of Q-OCT, including automatic dispersion cancellation, but with 10 million times higher signal. Our technique solves the artifact problem in Q-OCT and highlights the power of classical correlation in optical imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  4. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  5. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef] [PubMed]
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
    [CrossRef] [PubMed]
  7. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
    [CrossRef] [PubMed]
  8. B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601 (2006).
    [CrossRef]
  9. K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
    [CrossRef]
  10. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, "Classical dispersion-cancellation interferometry," Opt. Express 15, 8797-8804 (2007).
    [CrossRef] [PubMed]
  11. R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
    [CrossRef]
  12. M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
    [CrossRef]
  13. J. Altepeter, E. Jeffreys, and P. Kwiat, "Phase-compensated ultra-bright source of entangled photons," Opt. Express 13, 8951-8959 (2005).
    [CrossRef] [PubMed]
  14. Sellmeier coefficients, representative for Code 0211 microsheet glass, were provided by Corning Inc.
  15. If the bandwidth in HOM interference is determined by a pair of Gaussian bandpass filters in front of the detectors, rather than by the source, then the HOM dip is narrower than the WLI by only a factor of √2.
  16. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parametric downconversion," Opt. Lett. 31, 253-255 (2006).
    [CrossRef] [PubMed]
  17. A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, "Broadband sum-frequency generation as an efficient two-photon detector for optical tomography," Opt. Express 15, 8760-8769 (2007).
    [CrossRef] [PubMed]

2008

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
[CrossRef]

2007

2006

2005

2004

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

2002

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

1995

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

1992

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

1987

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Altepeter, J.

Banaszek, K.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Biggerstaff, D. N.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
[CrossRef]

Bizheva, K.

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Bromberg, Y.

Carrasco, S.

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Dayan, B.

Drexler, W.

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601 (2006).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Friesem, A. A.

Fujimoto, J. G.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Jeffreys, E.

Kaltenbaek, R.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
[CrossRef]

Kwiat, P.

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lavoie, J.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
[CrossRef]

Lundeen, J. S.

Maine, P.

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Mitchell, M. W.

Mourou, G.

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Nasr, M. B.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parametric downconversion," Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Pe’er, A.

Pessot, M.

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Puvanathasan, P.

Radunsky, A. S.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Resch, K. J.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
[CrossRef]

K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, "Classical dispersion-cancellation interferometry," Opt. Express 15, 8797-8804 (2007).
[CrossRef] [PubMed]

Saleh, B. E.

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Sergienko, A. V.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parametric downconversion," Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601 (2006).
[CrossRef]

Silberberg, Y.

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Teich, M. C.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. Saleh, M. C. Teich, J. P. Torres, and L. Torner, "Broadband light generation by noncollinear parametric downconversion," Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Torner, L.

Torres, J. P.

Walmsley, I. A.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

J. Biomed. Opt.

W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

Nat. Med.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Nat. Phys.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, "Quantum-inspired interferometry using chirped laser pulses," Nat. Phys. 4, 864-868 (2008)
[CrossRef]

Opt. Commun.

M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Opt. Commun. 62, 419-421 (1987).
[CrossRef]

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, "Blind dispersion compensation for optical coherence tomography," Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601 (2006).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum-optical coherence tomography with dispersion cancellation," Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Phys. Rev. Lett.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other

Sellmeier coefficients, representative for Code 0211 microsheet glass, were provided by Corning Inc.

If the bandwidth in HOM interference is determined by a pair of Gaussian bandpass filters in front of the detectors, rather than by the source, then the HOM dip is narrower than the WLI by only a factor of √2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for axial profiling with chirped-pulse interferometry. Pairs of oppositely-chirped laser pulses with horizontal polarization are combined at a 50/50 beam splitter (BS). The light from one BS output reflects from a sample; the light from the other undergoes a spatial delay. In the sample arm, two passes through the quarter-wave plate (QWP) rotate the polarization to vertical. This allows spatial recombination of the two beams at a polarizing beam splitter. Both beams are focussed onto a 0.5 mm thick BBO crystal phase-matched for type-II sum-frequency generation (SFG). Dichroic mirrors separate the fundamental from the SFG light. A grating and slit are used to filter a narrow band (0.46 nm FWHM) of SFG light before the light is detected by an amplified Si photodetector (D1). An alternate configuration, where a 45° polarizer is inserted before the nonlinear crystal and the fundamental light is directly detected with a photodiode (D2), allows the observation of white-light fringes and a direct comparison with CPI. A pair of calcite blocks can be inserted to compare the effects of material dispersion on the interferograms.

Fig. 2.
Fig. 2.

Axial scans of a microscope coverglass using chirped-pulse and white-light interference. Light enters from the left and is reflected from either the front or the back surface of the sample, as indicated at the top of the figure. The normalized detector signal is plotted as a function of path delay. Each data set shows interference features corresponding to the front and back surface reflections of the sample. The CPI (top) and the WLI (bottom) were taken a) without and b) with calcite blocks. The CPI signal resolution, as measured by the width of the interference feature, is unaffected by the dispersion whereas the WLI is broadened by 74%. As in Q-OCT, CPI shows an artifact between the two real signals.

Fig. 3.
Fig. 3.

False-color representation of the SFG spectrum vs path delay. Two pairs of narrow lines originate from SFG of the oppositely-chirped laser pulses with different time delays. When the time delay through the reference arm coincides with the delay through the sample arm from one of the two interfaces, an interference dip occurs. The other pair of crossings between the real interference dips gives rise to the artifact.

Fig. 4.
Fig. 4.

Controlling the phase of the artifact. CPI interferograms of the sample taken at an operating wavelength of a) 792.10 nm and b) 791.54 nm clearly shows the dependence of the phase of the artifact interference on the operating wavelength. c) Visibility of the artifact versus operating wavelength. Positive (negative) visibility corresponds to constructive (destructive) interference. The measured period of oscillation of (1.13±0.02) nm is in good agreement with the theoretical expectation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( Δ τ ) d Ω I ( Ω ) I ( Ω ) H ( Ω ) 2 Re [ d Ω I ( Ω ) I ( Ω ) H ( Ω ) H * ( Ω ) e 2 i Ω Δ τ ] ,

Metrics