Abstract

The propagation effects of spatially pseudo-partially coherent Gaussian Schell-model beams in atmosphere are investigated numerically. The characteristics of beam spreading, beam wandering and intensity scintillation are analyzed respectively. It is found that the degradation of degree of source coherence may cause reductions of relative beam spreading and scintillation index, which indicates that partially coherent beams are more resistant to atmospheric turbulence than fully coherent beams. And beam wandering is not much sensitive to the change of source coherence. However, a partially coherent beam have a larger spreading than the fully coherent beam both in free space and in atmospheric turbulence. The influences of changing frequency of random phase screen which models the source coherence on the final intensity pattern are also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Buck, "Effects of the atmosphere on laser beam propagation," Appl. Opt. 6, 703-708 (1967).
    [CrossRef] [PubMed]
  2. S. S. Khmelevtsov, "Propagation of laser radiation in a turbulent atmosphere," Appl. Opt. 12, 2421-2433 (1973).
    [CrossRef] [PubMed]
  3. S. M. Flatte and G. Y. Wang, "Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment," J. Opt. Soc. Am. A 10, 2363-2370 (1993).
    [CrossRef]
  4. J. D. Shelton, "Turbulence-induced scintillation on Gaussian-beam waves: theoretical predictions and observations from a laser-illuminated satellite," J. Opt. Soc. Am. A 12, 2172-2181 (1995).
    [CrossRef]
  5. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Optical Engineering Press, Bellingham, 1998).
  6. L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
    [CrossRef]
  7. J. C. Leader, "Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence," J. Opt. Soc. Am. A 69, 73-84 (1979).
    [CrossRef]
  8. G. Gbur and E. Wolf, "Spreading of partially coherent beams in random media," J. Opt. Soc. Am. A 19, 1592-1598 (2002).
    [CrossRef]
  9. J. C. Ricklin and F. M. Davidson, "Atmospheric turbulence effects on a partially coherent Gaussian-beam: implications for free-space laser communication," J. Opt. Soc. Am. A 19, 1794-1802 (2002).
    [CrossRef]
  10. T. Shirai, A. Dogariu, and E. Wolf, "Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A 20, 1094-1102 (2003).
    [CrossRef]
  11. A. Dogariu and S. Amarande, "Propagation of partially coherent beams: turbulence-induced degradation," Opt. Lett. 28, 10-12 (2003).
    [CrossRef] [PubMed]
  12. O. Korotkova, L. C. Andrews, and R. L. Phillips, "Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom," Opt. Eng. 43, 330-341 (2004).
    [CrossRef]
  13. X. Xiao and D. Voelz, "Wave optics simulation approach for partial spatially coherent beams," Opt. Express 14, 6986-6992 (2006).
    [CrossRef] [PubMed]
  14. D. Voelz and K. Fitzhenry, "Pseudo-partially coherent beam for free-space laser communication," Proc. SPIE 5550, 218-224 (2004).
    [CrossRef]
  15. X. Xiao and D. Voelz, "Wave optics simulation of pseudo-partially coherent beam propagation through turbulence: application to laser communications," Proc. SPIE 6304, 63040L-1-63040L-7 (2006).
  16. J. M. Martin and S. M. Flatte, "Intensity images and statistics from numerical simulation of wave propagation in 3-D random media," Appl. Opt. 27, 2111-2126 (1988).
    [CrossRef] [PubMed]
  17. D. L. Knepp, "Multiple phase-screen calculation of the temporal behavior of stochastic waves," Proc. IEEE 71, 722-737 (1983).
    [CrossRef]
  18. W. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, "Simulation of wave propagation in three-dimensional random media," Appl. Opt. 34, 2089-2101 (1995).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
[CrossRef]

2004 (2)

D. Voelz and K. Fitzhenry, "Pseudo-partially coherent beam for free-space laser communication," Proc. SPIE 5550, 218-224 (2004).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, "Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom," Opt. Eng. 43, 330-341 (2004).
[CrossRef]

2003 (2)

2002 (2)

1995 (2)

1993 (1)

1988 (1)

1983 (1)

D. L. Knepp, "Multiple phase-screen calculation of the temporal behavior of stochastic waves," Proc. IEEE 71, 722-737 (1983).
[CrossRef]

1979 (1)

J. C. Leader, "Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence," J. Opt. Soc. Am. A 69, 73-84 (1979).
[CrossRef]

1973 (1)

1967 (1)

Amarande, S.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, "Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom," Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Buck, A. L.

Coles, W. A.

Davidson, F. M.

Dogariu, A.

Filice, J. P.

Fitzhenry, K.

D. Voelz and K. Fitzhenry, "Pseudo-partially coherent beam for free-space laser communication," Proc. SPIE 5550, 218-224 (2004).
[CrossRef]

Flatte, S. M.

Frehlich, R. G.

Gbur, G.

Khmelevtsov, S. S.

Knepp, D. L.

D. L. Knepp, "Multiple phase-screen calculation of the temporal behavior of stochastic waves," Proc. IEEE 71, 722-737 (1983).
[CrossRef]

Korotkova, O.

O. Korotkova, L. C. Andrews, and R. L. Phillips, "Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom," Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Leader, J. C.

J. C. Leader, "Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence," J. Opt. Soc. Am. A 69, 73-84 (1979).
[CrossRef]

Martin, J. M.

Parenti, R.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, "Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom," Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Ricklin, J. C.

Sasiela, R. J.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
[CrossRef]

Shelton, J. D.

Shirai, T.

Voelz, D.

X. Xiao and D. Voelz, "Wave optics simulation approach for partial spatially coherent beams," Opt. Express 14, 6986-6992 (2006).
[CrossRef] [PubMed]

D. Voelz and K. Fitzhenry, "Pseudo-partially coherent beam for free-space laser communication," Proc. SPIE 5550, 218-224 (2004).
[CrossRef]

Wang, G. Y.

Wolf, E.

Xiao, X.

Yadlowsky, M.

Appl. Opt. (4)

J. Opt. Soc. Am. A (6)

Opt. Eng. (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, "Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom," Opt. Eng. 43, 330-341 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005).
[CrossRef]

Proc. IEEE (1)

D. L. Knepp, "Multiple phase-screen calculation of the temporal behavior of stochastic waves," Proc. IEEE 71, 722-737 (1983).
[CrossRef]

Proc. SPIE (1)

D. Voelz and K. Fitzhenry, "Pseudo-partially coherent beam for free-space laser communication," Proc. SPIE 5550, 218-224 (2004).
[CrossRef]

Other (2)

X. Xiao and D. Voelz, "Wave optics simulation of pseudo-partially coherent beam propagation through turbulence: application to laser communications," Proc. SPIE 6304, 63040L-1-63040L-7 (2006).

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Optical Engineering Press, Bellingham, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Comparison of normalized intensity distribution of GSM beams and of the fully coherent Gaussian beam.

Fig. 2.
Fig. 2.

(a) beam radius and (b) normalized peak intensity, vs. correlation radius lc .

Fig. 3.
Fig. 3.

Beam radius of a PPCB and a CB in turbulence and in free space as a function of propagation distance.

Fig. 4.
Fig. 4.

Comparison of relative beam spreading between a CB and a PPCB as a function of propagation distance.

Fig. 5.
Fig. 5.

Comparison of beam wandering between a PPCB and a CB as a function of Rytov index.

Fig. 6.
Fig. 6.

Scintillation index of a PPCB and a CB versus (a) Rytov index and (b) propagation distance

Fig. 7.
Fig. 7.

Beam radius of PPCBs as a function of Rytov index for different K.

Fig. 8.
Fig. 8.

Beam wandering RSM of PPCBs as a function of Rytov index for different K.

Fig. 9
Fig. 9

Scintillation index of PPCBs as a function of Rytov index and K.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U ( ρ , 0 ; ω ) = 1 2 π u ( ρ , 0 ; t ) exp ( i ωt ) dt ,
W ( ρ 1 , ρ 2 , ω 1 , ω 2 ) = U * ( ρ 1 , 0 ; ω 1 ) U ( ρ 2 , 0 ; ω 2 ) ,
W ( ρ 1 , ρ 2 ) = I 0 ( ρ 1 ) I 0 ( ρ 2 ) μ 0 ( ρ 2 ρ 1 ) ,
I 0 ( ρ ) = A exp ( 2 ρ 2 / W 0 2 ) ,
μ 0 ( ρ ) = exp ( ρ 2 / l c 2 ) ,
u ( x , y , 0 ; t ) = u 0 ( x , y , 0 ) exp [ i ξ ( x , y ; t ) ] ,
ξ ( x , y ; t ) = r ( x , y ; t ) f ( x , y ) ,
f ( x , y ) = 1 2 π σ f 2 exp ( x 2 + y 2 2 σ f 2 ) ,
l c 2 = 16 π σ f 4 σ r 2 .

Metrics