L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, “Beam wander effects on the scintillation index of a focused beam,” Proc. of SPIE 5793, 28–37 (2005).

[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom,” Opt. Eng. 43, 330–341 (2004).

[CrossRef]

D. Voelz and K. Fitzhenry, “Pseudo-partially coherent beam for free-space laser communication,” Proc. SPIE 5550, 218–224 (2004).

[CrossRef]

D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983).

[CrossRef]

J. C. Leader, “Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 69, 73–84 (1979).

[CrossRef]

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, “Beam wander effects on the scintillation index of a focused beam,” Proc. of SPIE 5793, 28–37 (2005).

[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom,” Opt. Eng. 43, 330–341 (2004).

[CrossRef]

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Optical Engineering Press, Bellingham, 1998).

D. Voelz and K. Fitzhenry, “Pseudo-partially coherent beam for free-space laser communication,” Proc. SPIE 5550, 218–224 (2004).

[CrossRef]

D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983).

[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom,” Opt. Eng. 43, 330–341 (2004).

[CrossRef]

J. C. Leader, “Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 69, 73–84 (1979).

[CrossRef]

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, “Beam wander effects on the scintillation index of a focused beam,” Proc. of SPIE 5793, 28–37 (2005).

[CrossRef]

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, “Beam wander effects on the scintillation index of a focused beam,” Proc. of SPIE 5793, 28–37 (2005).

[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom,” Opt. Eng. 43, 330–341 (2004).

[CrossRef]

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Optical Engineering Press, Bellingham, 1998).

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, “Beam wander effects on the scintillation index of a focused beam,” Proc. of SPIE 5793, 28–37 (2005).

[CrossRef]

A. L. Buck, “Effects of the atmosphere on laser beam propagation,” Appl. Opt. 6, 703–708 (1967).

[CrossRef]
[PubMed]

S. S. Khmelevtsov, “Propagation of laser radiation in a turbulent atmosphere,” Appl. Opt. 12, 2421–2433 (1973).

[CrossRef]
[PubMed]

J. M. Martin and S. M. Flatte, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988).

[CrossRef]
[PubMed]

W. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995).

[CrossRef]
[PubMed]

S. M. Flatte and G. Y. Wang, “Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment,” J. Opt. Soc. Am. A 10, 2363–2370 (1993).

[CrossRef]

J. D. Shelton, “Turbulence-induced scintillation on Gaussian-beam waves: theoretical predictions and observations from a laser-illuminated satellite,” J. Opt. Soc. Am. A 12, 2172–2181 (1995).

[CrossRef]

J. C. Leader, “Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 69, 73–84 (1979).

[CrossRef]

G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592–1598 (2002).

[CrossRef]

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian-beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002).

[CrossRef]

T. Shirai, A. Dogariu, and E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20, 1094–1102 (2003).

[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in lasercom,” Opt. Eng. 43, 330–341 (2004).

[CrossRef]

D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983).

[CrossRef]

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. Parenti, “Beam wander effects on the scintillation index of a focused beam,” Proc. of SPIE 5793, 28–37 (2005).

[CrossRef]

D. Voelz and K. Fitzhenry, “Pseudo-partially coherent beam for free-space laser communication,” Proc. SPIE 5550, 218–224 (2004).

[CrossRef]

X. Xiao and D. Voelz, “Wave optics simulation of pseudo-partially coherent beam propagation through turbulence: application to laser communications,” Proc. SPIE 6304, 63040L-1–63040L-7 (2006).

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE Optical Engineering Press, Bellingham, 1998).