Abstract

We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability of the device is achieved by varying the amplitude and the frequency of the applied external electric field. The threshold voltage for doped and undoped liquid crystals in a silica capillary and in a glass cell are also measured as a function of the frequency of the external electric field and the achieved results are compared.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Review: Photonic Crystal Fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003).
    [CrossRef]
  3. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12,1540-1550 (2004).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9,698-713 (2001).
    [CrossRef] [PubMed]
  5. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
    [CrossRef]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," Optical Fiber Communication Conference, 466-468 (2002).
  7. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
    [CrossRef]
  8. S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998).
    [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
    [CrossRef] [PubMed]
  10. M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
    [CrossRef]
  11. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13,7483-7496 (2005).
    [CrossRef] [PubMed]
  12. F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
    [CrossRef]
  13. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
    [CrossRef] [PubMed]
  14. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42,1270-1271 (2006).
    [CrossRef]
  15. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
    [CrossRef] [PubMed]
  16. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Opt. Lett. 33,986-988 (2008).
    [CrossRef] [PubMed]
  17. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
    [CrossRef]
  18. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
    [CrossRef]
  19. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
    [CrossRef]
  20. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006).
    [CrossRef]
  21. C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
    [CrossRef]
  22. J. S. Bradley, "Clusters and Colloids: From Theory and Application," edited by G. Schmid, VCH, Weinheim, (1994).
  23. S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
    [CrossRef]
  24. M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008).
    [CrossRef]
  25. S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
    [CrossRef]
  26. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).
  27. Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
    [CrossRef]
  28. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
    [CrossRef] [PubMed]
  29. V. G. Chigrinov, Liquid Crystal Devices (Artech-House, 1999).
  30. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
    [CrossRef]
  31. S. T. Wu, U. Efron, and L. D. Hess, "Birefringence measurements of liquid crystals," Appl. Opt. 23, 3911-3915 (1984)..
    [CrossRef] [PubMed]

2008

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008).
[CrossRef]

D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Opt. Lett. 33,986-988 (2008).
[CrossRef] [PubMed]

2007

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
[CrossRef] [PubMed]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

2006

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42,1270-1271 (2006).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

2005

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13,7483-7496 (2005).
[CrossRef] [PubMed]

2004

2003

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Review: Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

2002

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

2001

1998

S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998).
[CrossRef]

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

1984

Akimoto, M.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

Alkeskjold, T. T.

Anawati, A.

Bassi, P.

Bethell, D.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

Bjarklev, A.

Borelli, E.

Broeng, J.

Brust, M.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

Buchnev, O.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008).
[CrossRef]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

Cheon, C. I.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Czapla, A.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

de Sterke, C. M.

Dolinski, M.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Dunn, S. C.

Efron, U.

Eggleton, B. J.

Engan, H. E.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
[CrossRef]

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Fink, J.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

Gauza, S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

Glushchenko, A.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

Haakestad, M.W.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
[CrossRef]

Hale, A.

Hermann, D.

Hermann, D. S.

Hess, L. D.

Hirayama, I.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

Inoue, M.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

Kaczmarek, M.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008).
[CrossRef]

Kerbage, C.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9,698-713 (2001).
[CrossRef] [PubMed]

Kiely, C. J.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

Kobayashi, S.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Kriezis, E. E.

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006).
[CrossRef]

Kundu, S.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

Lægsgaard, J.

Larsen, T. T.

Lesiak, P.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Li, F.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Li, J.

Litchinitser, N. M.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Mach, P.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

Maeda, K.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

Marder, S.

S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998).
[CrossRef]

McPhedran, R. C.

Miyama, T.

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Nandhakumar, I.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008).
[CrossRef]

Nielsen, M.

Nielsen, M. D.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
[CrossRef]

Nishida, N.

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Noordegraaf, D.

Nowecka, K.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Reshetnyak, V.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

Reznikov, Y.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

Riishede, J.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13,7483-7496 (2005).
[CrossRef] [PubMed]

Rindorf, L.

Rogers, J. A.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, "Review: Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sakai, Y.

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Schiffrin, D. J.

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

Scolari, L.

Seed, A.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

Shiraishi, Y.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Shiraki, H.

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Sluckin, T. J.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Steinvurzel, P. E.

Takatoh, K.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

Tartarini, G.

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

Tereshchenko, O.

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

Toshima, N.

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

Tsiboukis, T. D.

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006).
[CrossRef]

Wang, H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

West, J.

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

West, J. L.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Westbrook, P. S.

White, T. P.

Windeler, R. S.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9,698-713 (2001).
[CrossRef] [PubMed]

Wojcik, J.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Wu, S. T.

D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Opt. Lett. 33,986-988 (2008).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
[CrossRef] [PubMed]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998).
[CrossRef]

S. T. Wu, U. Efron, and L. D. Hess, "Birefringence measurements of liquid crystals," Appl. Opt. 23, 3911-3915 (1984)..
[CrossRef] [PubMed]

Xu, J.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

Yoshikawa, H.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

Zhang, Q. T.

S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998).
[CrossRef]

Zografopoulos, D. C.

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006).
[CrossRef]

App. Phys. Lett.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).

Appl. Opt.

Appl. Phys. Lett.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003).
[CrossRef]

Electron. Lett.

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42,1270-1271 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005).
[CrossRef]

J. Display Technology

S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006).
[CrossRef]

J. Lightwave Techol.

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006).
[CrossRef]

Jpn. J. Appl. Phys

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008).
[CrossRef]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
[CrossRef]

S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998).
[CrossRef]

Meas. Sci. Technol.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007).
[CrossRef]

Nature

C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998).
[CrossRef]

Opt. Commun.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007).
[CrossRef]

Opto-Electronics Review

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006).
[CrossRef]

Phys. Rev. Lett.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006).
[CrossRef] [PubMed]

Science

P. St. J. Russell, "Review: Photonic Crystal Fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003).
[CrossRef]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," Optical Fiber Communication Conference, 466-468 (2002).

V. G. Chigrinov, Liquid Crystal Devices (Artech-House, 1999).

J. S. Bradley, "Clusters and Colloids: From Theory and Application," edited by G. Schmid, VCH, Weinheim, (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) SEM image of the PCF end facet. (b) Polarization optical micrograph of a 5 μm silica capillary infiltrated with E7 doped with BaTiO3 nanoparticles.

Fig. 2.
Fig. 2.

Setup used to measure the transmission spectrum of the fabricated device.

Fig. 3.
Fig. 3.

Transmission spectrum of LMA-10 infiltrated with E7 doped with BaTiO3 nanoparticles at three different temperatures.

Fig. 4.
Fig. 4.

Transmission spectrum at various frequencies and amplitudes of the external electric field for LMA-10 infiltrated nanoparticle-doped E7 ((a), (b) and (c)) and for LMA-10 infiltrated with pure E7 ((d), (e) and (f)).

Fig. 5.
Fig. 5.

Transmission spectrum of LMA-10 infiltrated with nanoparticle-doped E7 as a function of the frequency of the external electric field. The amplitude of the voltage here is constant (120 Vrms). The shape of the short wavelength edge can be controlled through adjustment of the frequency.

Fig. 6.
Fig. 6.

Polarization optical micrograph of a 5 μm silica capillary infiltrated with nanoparticle-doped E7 for (a) V=0Vrms, f=1kHz, (b) V=62Vrms, f=1kHz, (c) V=88Vrms, f=1kHz, (d) V=116Vrms, f=1kHz.

Fig. 7.
Fig. 7.

Measured Frederiks threshold at different frequencies for nanoparticles-doped E7 and pure E7 in a silica capillay.

Fig. 8.
Fig. 8.

Experimental setup for measuring the threshold voltage of a glass cell infiltrated with liquid crystal.

Fig. 9.
Fig. 9.

Voltage-dependent transmission of a homogeneous 8-μm cell filled with BaTiO3 nanoparticle-doped E7 for different frequencies of the external applied field.

Fig. 10.
Fig. 10.

Voltage-dependent phase change of the BaTiO3 nanoparticle-doped cell when a 10 Hz square wave is applied to the cell. The phase change is linear with the voltage near the threshold region [31]. The threshold voltage Vth is, in this case extrapolated to be equal to 1.15 Vrms.

Fig. 11.
Fig. 11.

Measured Frederiks transition threshold at different frequencies for nanoparticle-doped E7 and pure E7 in a glass cell.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ ( V , T , λ ) = 2 πd Δ n ( V , T , λ ) / λ
T = sin 2 ( δ / 2 )

Metrics