Abstract

Distributions of the optical field in a solid immersion lens recording system are calculated for higher-order radially polarized modes of the incidence. Results show that two higher-order radially polarized modes of R-TEM11 * and R-TEM21 * are useful to near-field optical recording, but further higher-order modes such as R-TEM31 *, R-TEM41 *, and R-TEM51 * are not useful due to the strong side-lobe intensity. Compared with R-TEM01 * beam focusing, the full width at half-maximum of the recording spot is decreased markedly and the focal depth is increased substantially by using R-TEM11 * beam focusing. The effect of the beam width of the R-TEM11 * mode is also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  2. B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  3. B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
    [CrossRef]
  4. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997).
    [CrossRef] [PubMed]
  5. Y. Zhang, "Theoretical study of near-field optical storage with a solid immersion lens," J. Opt. Soc. Am. A 23, 2132-2136 (2006).
    [CrossRef]
  6. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
    [CrossRef]
  7. M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
    [CrossRef]
  8. S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
    [CrossRef]
  9. J. Zhang, C. W. See, and M. G. Somekh, "Imaging performance of wide-field solid immersion lens microscopy," Appl. Opt. 46, 4202-4208 (2007).
    [CrossRef] [PubMed]
  10. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
    [CrossRef]
  11. Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
    [CrossRef]
  12. G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
    [CrossRef]
  13. H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
    [CrossRef]
  14. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter wavelength," Opt. Express 13, 7189-7197 (2005).
    [CrossRef] [PubMed]
  15. Y. Zhang, "Optical data storage system with a plano-ellipsoidal solid immersion mirror illuminated directly by a point light source," Appl. Opt. 45, 8653-8658 (2006).
    [CrossRef] [PubMed]
  16. Y. Zhang, "Optical intensity distribution of a plano-convex solid immersion mirror," J. Opt. Soc. Am. A 24, 211-214 (2007).
    [CrossRef]
  17. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]
  18. P. Török, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995).
    [CrossRef]
  19. Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
    [CrossRef]
  20. Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
    [CrossRef]
  21. Y. Zhang, "A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems," J. Mod. Opt. 53, 1919-1925 (2006).
    [CrossRef]
  22. C. Liu and S.-H. Park, "Numerical analysis of an annular-aperture solid immersion lens," Opt. Lett. 29, 1742-1744 (2004).
    [CrossRef] [PubMed]
  23. Y. Zhang and X. Ye, "Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens," Appl. Phys. B 86, 97-103 (2007).
    [CrossRef]
  24. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  25. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
  26. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  27. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191,161-172 (2001).
    [CrossRef]
  28. Y. Kozawa and S. Sato, "Focusing property of a double-ring-shaped radially polarized beam," Opt. Lett. 31, 820-822 (2006).
    [CrossRef] [PubMed]
  29. Y. Kozawa and S. Sato, "Sharper focal spot formed by higher-order radially polarized laser beams," J. Opt. Soc. Am. A 24, 1793-1798 (2007).
    [CrossRef]
  30. J. Hamazaki, A. Kawamoto, R. Morita, and T. Omatsu, "Direct production of high-power radially polarized output from a side-pumped Nd:YVO4 bounce amplifier using a photonic crystal mirror," Opt. Express 16, 10762-10768 (2008).
    [CrossRef] [PubMed]
  31. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
    [CrossRef]
  32. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
    [CrossRef] [PubMed]
  33. R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
    [CrossRef]

2008

2007

Y. Kozawa and S. Sato, "Sharper focal spot formed by higher-order radially polarized laser beams," J. Opt. Soc. Am. A 24, 1793-1798 (2007).
[CrossRef]

Y. Zhang and X. Ye, "Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens," Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

J. Zhang, C. W. See, and M. G. Somekh, "Imaging performance of wide-field solid immersion lens microscopy," Appl. Opt. 46, 4202-4208 (2007).
[CrossRef] [PubMed]

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

Y. Zhang, "Optical intensity distribution of a plano-convex solid immersion mirror," J. Opt. Soc. Am. A 24, 211-214 (2007).
[CrossRef]

2006

2005

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
[CrossRef] [PubMed]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter wavelength," Opt. Express 13, 7189-7197 (2005).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

2004

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

C. Liu and S.-H. Park, "Numerical analysis of an annular-aperture solid immersion lens," Opt. Lett. 29, 1742-1744 (2004).
[CrossRef] [PubMed]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

2003

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

2001

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191,161-172 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

2000

1999

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

1997

1996

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
[CrossRef]

1995

1994

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

1990

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1959

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Ahmed, M. A.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Akiyama, H.

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

Baba, M.

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

Bardoux, M.

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

Booker, G. R.

Boué, C.

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

Brown, T. G.

Challener, W. A.

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Eraslan, M. G.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Filloy, C.

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

Fournier, D.

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

Glur, H.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Goldberg, B. B.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Graf, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Hamazaki, J.

Hatano, H.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Hayashi, S.

Helseth, L. E.

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191,161-172 (2001).
[CrossRef]

Hoshino, T.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Ichimura, I.

Ippolito, S. B.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Kawamoto, A.

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997).
[CrossRef] [PubMed]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Koyama, K.

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

Kozawa, Y.

Laczik, Z.

Leblebici, Y.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

Liu, C.

Liu, Z.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Mihalcea, C.

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Mirin, R.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

Morita, R.

Moser, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Ogura, K.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Omatsu, T.

Park, S.-H.

Parriaux, O.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Pelhos, K.

Peng, C.

Pigeon, F.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Romano, V.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

Ruger, D.

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Sakata, T.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Sato, S.

See, C. W.

Somekh, M. G.

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Tessier, G.

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

Thorne, S. A.

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Török, P.

Ueda, H.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Ünlü, M. S.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Vamivakas, A. N.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

Varga, P.

Webb, R. H.

R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
[CrossRef]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Xiao, H.

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Ye, X.

Y. Zhang and X. Ye, "Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens," Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

Yoshita, M.

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

Youngworth, K. S.

Zhang, J.

Zhang, Y.

Y. Zhang and X. Ye, "Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens," Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

Y. Zhang, "Optical intensity distribution of a plano-convex solid immersion mirror," J. Opt. Soc. Am. A 24, 211-214 (2007).
[CrossRef]

Y. Zhang, "Theoretical study of near-field optical storage with a solid immersion lens," J. Opt. Soc. Am. A 23, 2132-2136 (2006).
[CrossRef]

Y. Zhang, "A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems," J. Mod. Opt. 53, 1919-1925 (2006).
[CrossRef]

Y. Zhang, "Optical data storage system with a plano-ellipsoidal solid immersion mirror illuminated directly by a point light source," Appl. Opt. 45, 8653-8658 (2006).
[CrossRef] [PubMed]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Zheng, C.

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Zou, Y.

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Y. Zhang and X. Ye, "Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens," Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Appl. Phys. Lett.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999).
[CrossRef]

S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004).
[CrossRef]

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005).
[CrossRef]

G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007).
[CrossRef]

J. Appl. Phys.

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005).
[CrossRef]

M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002).
[CrossRef]

J. Mod. Opt.

Y. Zhang, "A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems," J. Mod. Opt. 53, 1919-1925 (2006).
[CrossRef]

J. Opt. Soc. Am. A

New J. Phys.

Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004).
[CrossRef]

Opt. Commun.

L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191,161-172 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002).
[CrossRef]

Optik

Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004).
[CrossRef]

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Rep. Prog. Phys.

R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic plot of an optical recording system with a solid immersion lens.

Fig. 2.
Fig. 2.

Intensity profiles in the inner surface of the sample for the focusing of (a) R-TEM01 *, (b) R-TEM11 *, (c) R-TEM21 *, (d) R-TEM31 *, (e) R-TEM41 *, and (f) R-TEM51 * modes when h=50 nm and NA=1. The total intensity (solid curves), the radial component (dotted curves), and the longitudinal component (dashed curves) are drawn in each figure. Every profile is normalized to the peak intensity in (a).

Fig. 3.
Fig. 3.

Normalized intensity profiles of (a) longitudinal component and (b) total intensity in the inner surface of the sample for different radial modes when h=50nm and NA=1.

Fig. 4.
Fig. 4.

Normalized total intensity distributions in the ρ-z meridional plane for the incident R-TEM01 * (a) and R-TEM11 * (b) beams when h=50nm. and NA=1.

Fig. 5.
Fig. 5.

Calculated intensity profiles in the inner surface of the sample for different beam width parameters of β 0= (a) 2.5, (b) 2.0, (c) 1.3, and (d) 0.5, where h=50nm and NA=1, and the incident beam is the R-TEM11 * mode. The total intensity (solid curve), the longitudinal component (dashed curve), and the radial component (dotted curve) are represented in each figure. Every intensity profile is normalized to the maximum of the total intensity in (b).

Fig. 6.
Fig. 6.

(a) Peak intensity (a) and FWHM (b) of the focused spot in the inner surface of the sample plotted against the beam width parameter β 0 for R-TEM11 * (solid curve) and R-TEM01 * (dashed curve) mode focusing. The FWHM value is in units of wavelength.

Tables (1)

Tables Icon

Table 1. Pattern of the Focal Spot for High-NA SIL Focusing at h=50nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ρ ρ ϕ z = i η 0 θ 1 max t sys p cos θ 3 cos θ 1 sin θ 1 l 0 ( θ 1 ) J 1 ( k 1 ρ sin θ 1 ) exp [ i k 3 ( z h ) cos θ 3 ] d θ 1 ,
E z ρ ϕ z = i η 0 θ 1 max t sys p sin θ 3 cos θ 1 sin θ 1 l 0 ( θ 1 ) J 0 ( k 1 ρ sin θ 1 ) exp [ i k 3 ( z h ) cos θ 3 ] d θ 1
t sys p = t 12 p t 23 p exp ( i δ gap / 2 ) 1 + r 12 p r 23 p exp ( i δ gap ) .
l 0 ( θ 1 ) = β 0 sin θ 1 sin θ 1 max exp [ ( β 0 sin θ 1 sin θ 1 max ) 2 ] L p 1 [ ( β 0 sin θ 1 sin θ 1 max ) 2 ] ,

Metrics