Abstract

We performed simultaneous, multispectral CRDS measurements that for the first time use the Supercontinuum light source. We called this approach Supercontinuum Cavity Ring-Down Spectrography (SC CRDSpectrography) and successfully applied it to measuring the absorption spectrum of NO2 gas at a concentration of 2 ppm. The extrapolated sensitivity of our setup was much greater, about 5 ppb. The ppb sensitivity level is comparable to this obtainable with single wavelength dye-lasers based CRDS systems. It is, therefore, feasible to construct extremely broadband and sensitive CRDS devices basing on the SC CRDSpectrography scheme.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.  Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem.  29, 867-874 (2005)
    [CrossRef]
  2. A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988)
    [CrossRef]
  3. R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67, 2708-2713 (1996)
    [CrossRef]
  4. J. J. Scherer, "Ringdown spectral photography," Chem. Phys. Lett. 292, 143-153 (1998)
    [CrossRef]
  5. S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
    [CrossRef]
  6. A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001)
    [CrossRef]
  7. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005)
    [CrossRef]
  8. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
    [CrossRef] [PubMed]
  9. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16, 10178-10188 (2008)
    [CrossRef] [PubMed]
  10. A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007)
    [CrossRef]
  11. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z
  12. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000)
    [CrossRef]
  13. K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
    [CrossRef]
  14. S. M. Ball and R. L. Jones, "Broad-Band Cavity Ring-Down Spectroscopy," Chem. Rev. 103, 5239-5262 (2003)
    [CrossRef] [PubMed]
  15. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
    [CrossRef]
  16. J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
    [CrossRef]
  17. D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007)
    [CrossRef]

2008 (1)

2007 (2)

A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007)
[CrossRef]

D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007)
[CrossRef]

2006 (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

2005 (2)

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005)
[CrossRef]

C.  Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem.  29, 867-874 (2005)
[CrossRef]

2003 (1)

S. M. Ball and R. L. Jones, "Broad-Band Cavity Ring-Down Spectroscopy," Chem. Rev. 103, 5239-5262 (2003)
[CrossRef] [PubMed]

2001 (2)

S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
[CrossRef]

A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001)
[CrossRef]

2000 (2)

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000)
[CrossRef]

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

1998 (2)

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

J. J. Scherer, "Ringdown spectral photography," Chem. Phys. Lett. 292, 143-153 (1998)
[CrossRef]

1996 (2)

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67, 2708-2713 (1996)
[CrossRef]

J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
[CrossRef]

1988 (1)

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988)
[CrossRef]

Ball, S. M

S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
[CrossRef]

Ball, S. M.

S. M. Ball and R. L. Jones, "Broad-Band Cavity Ring-Down Spectroscopy," Chem. Rev. 103, 5239-5262 (2003)
[CrossRef] [PubMed]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000)
[CrossRef]

Brault, J. W.

J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
[CrossRef]

Carleer, M.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Chudzynski, S.

A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001)
[CrossRef]

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

Colin, R.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Coquart, B.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007)
[CrossRef]

Czyzewski, A.

A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001)
[CrossRef]

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988)
[CrossRef]

Engeln, R.

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67, 2708-2713 (1996)
[CrossRef]

Ernst, K.

A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001)
[CrossRef]

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

Fally, S.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Fechner, M.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005)
[CrossRef]

Hand, J. W.

D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007)
[CrossRef]

Harder, J. W.

J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
[CrossRef]

Hermans, C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005)
[CrossRef]

Hult, J.

Jenouvrieri, A.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Johnston, P. V.

J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
[CrossRef]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Jones, R. L

S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
[CrossRef]

Jones, R. L.

Kaminski, C. F.

Land, D. V.

D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007)
[CrossRef]

Langridge, J. M.

Laurila, T.

Levick, A. P.

D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007)
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000)
[CrossRef]

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67, 2708-2713 (1996)
[CrossRef]

Merienne, M. F.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Mount, G. H.

J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007)
[CrossRef]

Norton, E. G.

S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
[CrossRef]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988)
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000)
[CrossRef]

Pietruczuk, A.

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

Povey, I. M

S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
[CrossRef]

Queißer, M.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Rohwetter, P.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Ruth, A. A.

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005)
[CrossRef]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, "Ringdown spectral photography," Chem. Phys. Lett. 292, 143-153 (1998)
[CrossRef]

Simon, P. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Stacewicz, T.

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Stelmaszczyk, K.

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Szymanski, A.

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Vallance, C.

C.  Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem.  29, 867-874 (2005)
[CrossRef]

Vandaele, A. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Watt, R. S.

Wöste, L.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Appl. Phys. B (2)

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z

K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000)
[CrossRef]

Chem. Phys. Lett. (2)

J. J. Scherer, "Ringdown spectral photography," Chem. Phys. Lett. 292, 143-153 (1998)
[CrossRef]

S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001)
[CrossRef]

Chem. Rev. (1)

S. M. Ball and R. L. Jones, "Broad-Band Cavity Ring-Down Spectroscopy," Chem. Rev. 103, 5239-5262 (2003)
[CrossRef] [PubMed]

Int. Rev. in Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000)
[CrossRef]

J. Geophys. Res. (1)

J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996)
[CrossRef]

Meas. Sci. Technol. (1)

D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007)
[CrossRef]

New J. Chem. (1)

C.  Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem.  29, 867-874 (2005)
[CrossRef]

Opt. Express (1)

Opt. Commun. (1)

A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001)
[CrossRef]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007)
[CrossRef]

Quant. Spectrosc. Radiat. Transfer (1)

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998)
[CrossRef]

Rev. Sci. Instrum. (3)

A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988)
[CrossRef]

R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67, 2708-2713 (1996)
[CrossRef]

S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005)
[CrossRef]

Science (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

a) Integrated SC CRDSpectrography transients of 128 wavelength channels; wavelengths from 423.92 nm (blue circles) to 454.25 nm (red circles). During the acquisition the camera gate was set to 300 μs. The gate delay was shifted in steps of 0.3 μs. b) The measured decay times, τ0 , ranging from (9.595+/-0.053) μs to (12.090+/-0.063) μs were used to calculate the wavelength dependent reflection coefficient of the cavity mirrors, R.

Fig. 2.
Fig. 2.

a) Integrated SC CRDSpectrography transients as measured by the presence NO2 absorber. The decay constants are approximately tenfold smaller than those of Fig. 1(a). b) Measured absorption spectrum of NO2 superimposed on the transmission curve of the cavity. Symbols τ and τ0 denote decay times, respectively, for the absorber-filled and empty cavity.

Fig. 3.
Fig. 3.

a) Measured and b) reference [15] absorption spectrum of NO2. Symbols, 1/τ and 1/τ0 denote inverse decay times respectively, for the absorber-filled and empty cavity, σ denotes the absorption cross-section.

Metrics