Abstract

The quality of balanced detection in a coherent receiver is analyzed theoretically and experimentally. The impact of the characteristics of the optics on the balanced detection is presented. A parameter that characterizes the performance of the balanced detection suitable for the whole optical front-end is proposed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. Fisk, B. Basch, W. Kluge, J. Gatewood, P. J. Winzer, G. Raybon, T. Kissel, T. Carenza, A. H. Gnauck, A. Adamiecki, D. A. Fishman, N. M. Denkin, C. R. Doerr, M. Duelk, T. Kawanishi, K. Higuma, Y. Painchaud, and C. Paquet, "Transmission of 107-Gb/s DQPSK over Verizon 504-km Commercial LambdaXtreme® Transport System," Proc. OFC 2008, paper NMC2 (2008).
  2. S. L. Jansen, R. H. Derksen, C. Schubert, X. Zhou, M. Birk, C.-J. Weiske, M. Bohn, D. van den Borne, P. M. Krummrich, M. Möller, F. Horst, B. J. Offrein, H. de Waardt, G. D. Khoe, and A. Kirstädter, "107-Gb/s full-ETDM transmission over field installed fiber using vestigial sideband modulation." Proc. OFC 2007, paper OWE3 (2007).
  3. T. J. Xia, G. Wellbrock, D. Peterson, W. Lee, M. Pollock, B. Basch, D. Chen, M. Freiberger, M. Alfiad, H. de Waardt, M. Kuschnerov, B. Lankl, T. Wuth, E. D. Schmidt, B. Spinnler, C. J. Weiske, E. de Man, C. Xie, D. van den Borne, M. Finkenzeller, S. Spaelter, R. Derksen, M. Rehman, J. Behel, J. Stachowiak, and M. Chbat, "Multi-Rate (111-Gb/s, 2x43-Gb/s, and 8x10.7-Gb/s) Transmission at 50-GHz Channel Spacing over 1040-km Field-Deployed Fiber," Proc. ECOC 2008, paper Th.2.E.2 (2008).
  4. J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, "Experimental Analysis of 100Gb/s Coherent PDM-QPSK Long-Haul Transmission under Constraints of Typical Terrestrial Networks," Proc. ECOC 2008, paper Th.2.A.3 (2008).
  5. H. Zhang, Z. Tao, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, "Polarization Demultiplexing based on Independent Component Analysis in Optical Coherent Receivers," Proc. ECOC 2008, paper Mo.3.D.5 (2008).
  6. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, "Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission," J. Lightwave Technol. 26, 64-72 (2008).
    [CrossRef]
  7. S. J. Savory, "Digital Signal Processing Options in Long Haul Transmission," Proc. OFC 2008, paper OTuO3 (2008).
  8. K. Kikuchi, "Coherent optical communication systems," in Optical Fiber Telecommunications V, I. P. Kaminow, T. Li and A. E. Willner, eds., (Elsevier, 2008) Vol. B. Chap. 3
    [CrossRef]
  9. K. Kikuchi, "Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
    [CrossRef]
  10. R. Epworth, J. Whiteaway and S. J. Savory, "3 fibre I and Q coupler," US patent 6,859,586 (2005).
  11. A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
    [CrossRef]
  12. H.-G. Bach, "Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond," Proc. SPIE 6014, 60140B (2005).
    [CrossRef]

2008 (2)

A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, "Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission," J. Lightwave Technol. 26, 64-72 (2008).
[CrossRef]

2006 (1)

K. Kikuchi, "Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

2005 (1)

H.-G. Bach, "Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond," Proc. SPIE 6014, 60140B (2005).
[CrossRef]

Bach, H.-G.

H.-G. Bach, "Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond," Proc. SPIE 6014, 60140B (2005).
[CrossRef]

Carena, A.

A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
[CrossRef]

Curri, V.

A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
[CrossRef]

De Man, E.

de Waardt, H.

Duthel, T.

Fludger, C. R. S.

Forghieri, F.

A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
[CrossRef]

Geyer, J.

Khoe, G.-D.

Kikuchi, K.

K. Kikuchi, "Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

Poggiolini, P.

A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
[CrossRef]

Schmidt, E.-D.

Schulien, C.

van den Borne, D.

Wuth, T.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kikuchi, "Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation," IEEE J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Carena, V. Curri, P. Poggiolini and F. Forghieri, "Dynamic range of single-ended detection receivers for 100GE Coherent PM-QPSK," IEEE Photon. Technol. Lett. 20, 1281-1283 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Proc. SPIE (1)

H.-G. Bach, "Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond," Proc. SPIE 6014, 60140B (2005).
[CrossRef]

Other (8)

S. J. Savory, "Digital Signal Processing Options in Long Haul Transmission," Proc. OFC 2008, paper OTuO3 (2008).

K. Kikuchi, "Coherent optical communication systems," in Optical Fiber Telecommunications V, I. P. Kaminow, T. Li and A. E. Willner, eds., (Elsevier, 2008) Vol. B. Chap. 3
[CrossRef]

R. Epworth, J. Whiteaway and S. J. Savory, "3 fibre I and Q coupler," US patent 6,859,586 (2005).

T. J. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. Fisk, B. Basch, W. Kluge, J. Gatewood, P. J. Winzer, G. Raybon, T. Kissel, T. Carenza, A. H. Gnauck, A. Adamiecki, D. A. Fishman, N. M. Denkin, C. R. Doerr, M. Duelk, T. Kawanishi, K. Higuma, Y. Painchaud, and C. Paquet, "Transmission of 107-Gb/s DQPSK over Verizon 504-km Commercial LambdaXtreme® Transport System," Proc. OFC 2008, paper NMC2 (2008).

S. L. Jansen, R. H. Derksen, C. Schubert, X. Zhou, M. Birk, C.-J. Weiske, M. Bohn, D. van den Borne, P. M. Krummrich, M. Möller, F. Horst, B. J. Offrein, H. de Waardt, G. D. Khoe, and A. Kirstädter, "107-Gb/s full-ETDM transmission over field installed fiber using vestigial sideband modulation." Proc. OFC 2007, paper OWE3 (2007).

T. J. Xia, G. Wellbrock, D. Peterson, W. Lee, M. Pollock, B. Basch, D. Chen, M. Freiberger, M. Alfiad, H. de Waardt, M. Kuschnerov, B. Lankl, T. Wuth, E. D. Schmidt, B. Spinnler, C. J. Weiske, E. de Man, C. Xie, D. van den Borne, M. Finkenzeller, S. Spaelter, R. Derksen, M. Rehman, J. Behel, J. Stachowiak, and M. Chbat, "Multi-Rate (111-Gb/s, 2x43-Gb/s, and 8x10.7-Gb/s) Transmission at 50-GHz Channel Spacing over 1040-km Field-Deployed Fiber," Proc. ECOC 2008, paper Th.2.E.2 (2008).

J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, "Experimental Analysis of 100Gb/s Coherent PDM-QPSK Long-Haul Transmission under Constraints of Typical Terrestrial Networks," Proc. ECOC 2008, paper Th.2.A.3 (2008).

H. Zhang, Z. Tao, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, "Polarization Demultiplexing based on Independent Component Analysis in Optical Coherent Receivers," Proc. ECOC 2008, paper Mo.3.D.5 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Function of the optical front-end (OFE) in a DP-QPSK receiver.

Fig. 2.
Fig. 2.

Illumination conditions for determining the CMRR of a pair of balanced photodiodes.

Fig. 3.
Fig. 3.

Basic configuration using a 3dB coupler for detecting a signal mixed with a reference from a local oscillator.

Fig. 4.
Fig. 4.

Single-port illumination for the determination of the SPRR.

Fig. 5.
Fig. 5.

Dual-port illumination for the determination of the SPRR.

Fig. 6.
Fig. 6.

Input and output signals around the 90° optical hybrid mixer.

Fig. 7.
Fig. 7.

SPRR as a function of the frequency for different imbalance and skew.

Fig. 8.
Fig. 8.

Configurations for the measurement of the SPRR denominator (a) and numerator (b). IM: Intensity modulator; PM: Phase modulator; VOA: Variable optical attenuator; DL: Delay line; PC: Polarization controller.

Fig. 9.
Fig. 9.

RF power of the output signal as a function of the modulation frequency using the configuration in Fig. 8(a) for two successive scans (green and gray) and maximum curve over 18 successive scans (blue).

Fig. 10.
Fig. 10.

RF power of the output signal as a function of the modulation frequency using the configuration in Fig. 8(a) for a single scan (gray) and maximum curve over 18 successive scans (blue). Comparison with the RF power measured using the configuration of Fig. 8(b) when one of the photodiode is disconnected (green and red).

Fig. 11.
Fig. 11.

RF power of the output signal as a function of the modulation frequency using the configuration in Fig. 8(b).

Fig. 12.
Fig. 12.

Measured SPRR (blue), theoretical SPRR (red) and measured CMRR (green) as a function of the frequency.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

CMRR = Δ I I 1 + I 2 .
E s ( t ) = P s ( t ) · exp ( J ϕ s ( t ) ) · exp ( J ω s t ) ,
E LO ( t ) = P LO ( t ) · exp ( J ϕ LO ( t ) ) · exp ( J ω LO t ) .
I 1 ( t ) = R 2 { P s ( t ) + P LO ( t ) + 2 P s ( t ) P LO ( t ) · sin ( ( ω s ω LO ) · t + ϕ s ( t ) ϕ LO ( t ) ) } ,
I 2 ( t ) = R 2 { P s ( t ) + P LO ( t ) 2 P s ( t ) P LO ( t ) · sin ( ( ω s ω LO ) · t + ϕ s ( t ) ϕ LO ( t ) ) } .
Δ I ( t ) = I 1 ( t ) I 2 ( t ) = 2 R P s ( t ) P LO ( t ) . sin ( ( ω s ω LO ) · t + ϕ s ( t ) ϕ LO ( t ) ) .
Δ I 2 Δ I dual Δ I 1 ,
SPRR = Δ I 0 Δ I 1 + Δ I 2 .
E 1 ( t ) = a s 1 E s ( t τ s 1 ) + a L 1 e j φ E s ( t τ τ L 1 ) ,
E 2 ( t ) = a s 2 E s ( t τ s 2 ) a L 2 e j φ E s ( t τ τ L 2 ) ,
E 3 ( t ) = a s 3 E s ( t τ s 3 ) + j a L 3 e j φ E s ( t τ τ L 3 ) ,
E 4 ( t ) = a s 4 E s ( t τ s 4 ) j a L 4 e j φ E s ( t τ τ L 4 ) ,
τ + τ Li = τ si ,
Δ I ( t ) = R E s ( t τ s 1 ) 2 · ( a s 1 2 + a L 1 2 + 2 a s 1 a L 1 cos θ )
R E s ( t τ s 2 ) 2 · ( a s 2 2 + a L 2 2 + 2 a s 2 a L 2 cos θ ) ,
θ = φ + arg ( a L 1 ) arg ( a s 1 ) = φ + arg ( a L 2 ) arg ( a s 2 ) .
Δ I 1 ( t ) = R { E s ( t τ s 1 ) 2 · ( a s 1 + a L 1 ) 2 E s ( t τ s 2 ) 2 · ( a s 2 a L 2 ) 2 } ,
Δ I 2 ( t ) = R { E s ( t τ s 1 ) 2 · ( a s 1 a L 1 ) 2 E s ( t τ s 2 ) 2 · ( a s 2 + a L 2 ) 2 } .
Δ I 1 ( t ) R · E s ( t τ s 1 ) 2 · ( a s 1 + a L 1 ) 2 ,
Δ I 2 ( t ) R · E s ( t τ s 2 ) 2 · ( a s 2 + a L 2 ) 2 .
Δ I 0 ( t ) = 4 R · { a s 1 2 · E s ( t τ s 1 ) 2 a s 2 2 · E s ( t τ s 2 ) 2 } .
SPRR ( f ) = Δ I 0 ( f ) Δ I 1 ( f ) + Δ I 2 ( f ) .
SPRR sI ( f ) = 4 δ sI 2 + 1 2 ( 1 δ sI 2 ) ( 1 cos ( 2 π f Δ τ ) ) 1 + η I + η I ( 1 + δ sI ) ( 1 + δ LI ) + η I ( 1 δ sI ) ( 1 δ LI ) ,
Δ τ = τ s 1 τ s 2 ,
δ sI = a s 1 2 a s 2 2 a s 1 2 + a s 2 2 ,
δ LI = a L 1 2 a L 2 2 a L 1 2 + a L 2 2 ,
η I = a L 1 2 + a L 2 2 a s 1 2 + a s 2 2 .
Δ I ( t ) = 4 R a 2 · E s ( t ) · E s ( t τ ) · cos θ ,
θ = φ + arg ( E s ( t τ ) ) arg ( E s ( t ) ) .
Δ I 1 ( t ) = Δ I 2 ( t ) = 4 R a 2 · E s ( t ) · E s ( t τ ) .
E s ( t ) = P s ( t ) = P 0 + Δ P cos ( 2 π f t ) ,
Δ I 1 ( t ) = 4 R a 2 · { P 0 + Δ P cos ( 2 π f ( t τ / 2 ) ) · cos ( π f τ ) } .

Metrics