Abstract

Current demands on optical nanolithography require the ability to rapidly and cost-effectively write arbitrary patterns over large areas with sub-diffraction limit feature sizes. The challenge in accomplishing this with arrays of near-field probes is maintaining equal separations between the substrate and each probe, even over non-planar substrates. Here we demonstrate array-based laser nanolithography where each probe is a microsphere capable of fabricating 100 nm structures using 355 nm light when self-positioned near a surface by Bessel beam optical trapping. We achieve both a feature size uniformity and relative positioning accuracy better than 15 nm, which agrees well with our model. Further improvements are possible using higher power and/or narrower Bessel beam optical traps.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
    [CrossRef]
  2. H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
    [CrossRef] [PubMed]
  3. K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
    [CrossRef]
  4. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
    [CrossRef]
  5. W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
    [CrossRef]
  6. R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
    [CrossRef]
  7. A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005).
    [CrossRef]
  8. D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006).
    [CrossRef]
  9. M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
    [CrossRef]
  10. Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005).
    [CrossRef]
  11. J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
    [CrossRef]
  12. M. Lenczner and R. C. Smith, "A two-scale model for an array of afm’s cantilever in the static case," Math. Comput. Model. 46, 776-805 (2007).
    [CrossRef]
  13. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
    [CrossRef] [PubMed]
  14. J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  15. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
    [CrossRef]
  16. E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413-417 (2008).
    [CrossRef]
  17. J. Durnin, "Exact solutions for nondiffracting beams. i. the scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987).
    [CrossRef]
  18. D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).
    [CrossRef]
  19. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
    [CrossRef] [PubMed]
  20. E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier Publishing Company, Inc., 1948).
  21. J. Y. Walz and D. C. Prieve, "Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere," Langmuir 8, 3073-3082 (1992).
    [CrossRef]
  22. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  23. M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
    [CrossRef]
  24. K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
    [CrossRef]
  25. We have also performed this calculation using a more accurate Mie scattering model [1], however the error is less than 5% with our parameters and the added complexity obfuscates the physics behind the trapping.
  26. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  27. E. McLeod and C. B. Arnold, "3d positioning accuracy of bessel beam surface traps balanced by electrostatic double-layer repulsion," in preparation.</other>

2008 (3)

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413-417 (2008).
[CrossRef]

2007 (4)

M. Lenczner and R. C. Smith, "A two-scale model for an array of afm’s cantilever in the static case," Math. Comput. Model. 46, 776-805 (2007).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
[CrossRef]

2006 (2)

D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

2005 (4)

Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005).
[CrossRef]

A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005).
[CrossRef]

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).
[CrossRef]

2004 (1)

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

2003 (2)

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002 (2)

K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

2001 (1)

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

1998 (1)

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

1996 (2)

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
[CrossRef]

1992 (1)

J. Y. Walz and D. C. Prieve, "Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere," Langmuir 8, 3073-3082 (1992).
[CrossRef]

1987 (1)

Adachi, Y.

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Arenholz, E.

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
[CrossRef]

Arnold, C. B.

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413-417 (2008).
[CrossRef]

Arnold, N.

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Bauerle, D.

K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
[CrossRef]

Bertsch, M.

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

Boneberg, J.

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

Boo, J.-H.

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Case, M. A.

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

Chen, G. X.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Chen, Y. J.

Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005).
[CrossRef]

Chimmalgi, A.

D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006).
[CrossRef]

A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005).
[CrossRef]

Chong, T. C.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

Denk, R.

K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

Dholakia, K.

D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Durnin, J.

Fu, Y.

R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
[CrossRef]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Giam, L. R.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Gierak, J.

R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
[CrossRef]

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Grigoropoulos, C. P.

D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006).
[CrossRef]

A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005).
[CrossRef]

Guo, W.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Himmelbauer, M.

M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
[CrossRef]

Hong, M. H.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

Hsu, J. H.

Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005).
[CrossRef]

Hu, Y.

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

Huo, F.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Hwang, D. J.

D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006).
[CrossRef]

Hyun, J. S.

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Kato, J.-i.

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kawata, S.

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kim, J.W.

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Kim, Y. D.

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Knoner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Komvopoulos, K.

A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005).
[CrossRef]

Langford, R. M.

R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
[CrossRef]

Leiderer, P.

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

Lenczner, M.

M. Lenczner and R. C. Smith, "A two-scale model for an array of afm’s cantilever in the static case," Math. Comput. Model. 46, 776-805 (2007).
[CrossRef]

Li, L.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

Lim, C. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Lin, H. N.

Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005).
[CrossRef]

Lin, Y.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

Liu, Z.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Luk’yanchuk, B. S.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

McGloin, D.

D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

McLendon, G.

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

McLeod, E.

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413-417 (2008).
[CrossRef]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Mirkin, C. A.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Moon, J.-S.

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Mosbacher, M.

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

Munzer, H. J.

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

Nellen, P. M.

R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Ortwein, C.

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

Park, J.-H.

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

Prieve, D. C.

J. Y. Walz and D. C. Prieve, "Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere," Langmuir 8, 3073-3082 (1992).
[CrossRef]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Schilcher, K.

M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
[CrossRef]

Scoles, G.

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

Shi, L. P.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Smith, R. C.

M. Lenczner and R. C. Smith, "A two-scale model for an array of afm’s cantilever in the static case," Math. Comput. Model. 46, 776-805 (2007).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Sun, H.-B.

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Takeyasu, N.

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Tan, L. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Vanderlick, T. K.

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

Walz, J. Y.

J. Y. Walz and D. C. Prieve, "Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere," Langmuir 8, 3073-3082 (1992).
[CrossRef]

Wang, Q. F.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

Wang, Z. B.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

Whitehead, D. J.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

Zhang, H.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Zheng, G.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Zheng, Z.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Zimmermann, J.

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

Appl. Phys. A (1)

M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996).
[CrossRef]

Appl. Phys. Lett. (5)

K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998).
[CrossRef]

K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002).
[CrossRef]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007).
[CrossRef]

J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

B-Solid (1)

J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008).
[CrossRef]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005).
[CrossRef]

J. Appl. Phys. (3)

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004).
[CrossRef]

A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005).
[CrossRef]

D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006).
[CrossRef]

J. Microsc. (1)

H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Langmuir (1)

J. Y. Walz and D. C. Prieve, "Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere," Langmuir 8, 3073-3082 (1992).
[CrossRef]

Math. Comput. Model. (1)

M. Lenczner and R. C. Smith, "A two-scale model for an array of afm’s cantilever in the static case," Math. Comput. Model. 46, 776-805 (2007).
[CrossRef]

MRS Bull. (1)

R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007).
[CrossRef]

Nano Lett. (1)

M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003).
[CrossRef]

Nanotechnology (1)

Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005).
[CrossRef]

Nature (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Nature Nanotech. (1)

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413-417 (2008).
[CrossRef]

Opt. Commun. (1)

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Science (1)

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008).
[CrossRef] [PubMed]

Other (3)

E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier Publishing Company, Inc., 1948).

E. McLeod and C. B. Arnold, "3d positioning accuracy of bessel beam surface traps balanced by electrostatic double-layer repulsion," in preparation.</other>

We have also performed this calculation using a more accurate Mie scattering model [1], however the error is less than 5% with our parameters and the added complexity obfuscates the physics behind the trapping.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Parallel nanolithography. (a) Four P’s written using overlapping laser pulses with 10 mJ/cm2 incident fluence. (b) Overlaid image of the four P’s in (a). (c) Four O’s written using 12 mJ/cm2 fluence and a 0.76 μm bead (upper-right), two 2.0 μm beads, and a 3.0 μm bead (lower-left). This illustrates the capability to simultaneously produce different line widths in an array. (d) Four test patterns of individual shots used to test positioning accuracy and feature size uniformity. The incident fluence is 15 mJ/cm2. (e) The overlaid image of the four patterns in (d), illustrating the identical nature of the patterns. (f) Forces acting on the microsphere that maintain its position relative to the substrate. The balance between the electrostatic repulsion and the optical radiation pressure allows the sphere to maintain its position away from the surface without active control and feedback. All panels: The trapping power in each beam is 140 mW, the scale bar in (b) is 500 nm, all other scale bars are 2 μm long, and unless noted the bead size is 0.76 μm.

Fig. 2.
Fig. 2.

Experimental setup. A: 178° Axicon. BS: 50/50 beam splitters for 1064 nm. DM1 & DM2: Dichroic mirrors designed to reflect 355 nm light. DM3: Dichroic mirror designed to reflect 1064 nm light. F: Short pass filter for blocking wavelengths above 800 nm. I: Iris. L1–L4: Converging lenses with respective focal lengths 50, 200, 200, and 25 mm. LS: Fiber light source. M: Silver mirrors. O: 60X microscope objective. S: Sample cell, mounted on an XYZ translation stage.

Fig. 3.
Fig. 3.

(a) Relative positioning accuracy between quadrants as a function of individual beam power Pb . The circles are experimental, while the solid red line is the model prediction without any fitting parameters. (b) Spot size vs. incident fluence. The mean size in each quadrant ā q is plotted for quadrants q = 1 to 4 using black circles, red squares, blue diamonds, and green triangles, respectively. The full length of the vertical error bars is given by twice the standard deviation for all quadrants combined. For all points, the trapping power in each beam is 140 mW.

Fig. 4.
Fig. 4.

Dependence of spot size on trapping power. (a) Mean spot size. (b) Standard deviation in spot size. A linear least-squares fit is plotted to illustrate the downward trend. All data is taken with an incident fluence of 15 mJ/cm2

Fig. 5.
Fig. 5.

Coefficients of variation in spot size. (a) Mean coefficient of variation between quadrants as a function of trapping power with an incident fluence of 15 mJ/cm2. (b) Mean coefficient of variation between quadrants normalized by the coefficient within quadrants as a function of incident fluence with a trapping power of 140 mW.

Tables (1)

Tables Icon

Table 1. Statistical parameters.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F ( r ) = 2 π n m R 3 c ( m 2 1 m 2 + 2 ) I ( r ) ,
I ( r ) = P b ρ 1 2 π w 0 2 ρ N 2 J 1 2 ( ρ N ) J 0 2 ( ρ 1 r w o ) ,
K = F r r = 0 = 2 n m R 3 ρ 1 4 P b c w 0 4 ρ N 2 J 1 2 ( ρ N ) ( m 2 1 m 2 + 2 ) .
P ( r ) d r = A 2 π r exp ( K r 2 2 k T ) d r ,
r = 0 r P ( r ) d r = π k T 2 K .
N s = { ( x , y ) x x s 0 m y y s 0 m } .
U q , s ( x , y ) = { Q q ( x , y ) for ( x , y ) N s 0 otherwise
max ( x , y ) N s ( i = m m j = m m U q , s ( x + i , y + j ) A ( α ) e i 2 + j 2 α 2 ) ,
A ( α ) = ( i = m m j = m m ( e i 2 + j 2 α 2 ) 2 ) 1 / 2

Metrics