Abstract

Point of care (POC) medical technologies require portable, small, robust instrumentation for practical implementation. In their current embodiment, optical frequency domain imaging (OFDI) systems employ large form-factor wavelength-swept lasers, making them impractical in the POC environment. Here, we describe a first step toward a POC OFDI system by demonstrating a miniaturized swept-wavelength source. The laser is based on a tunable optical filter using a reflection grating and a miniature resonant scanning mirror. The laser achieves 75 nm of bandwidth centered at 1340 nm, a 0.24 nm instantaneous line width, a 15.3 kHz repetition rate with 12 mW peak output power, and a 30.4 kHz A-line rate when utilizing forward and backward sweeps. The entire laser system is approximately the size of a deck of cards and can operate on battery power for at least one hour.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Price and L. J. Kricka, "Improving Healthcare Accessibility through Point-of-Care Technologies," Clin. Chem. 53, 1665-1675 (2007).
    [CrossRef] [PubMed]
  2. Y. Beaulieu, "Bedside echocardiography in the assessment of the critically ill," Crit. Care. Med. 35, S235-S249 (2007).
    [CrossRef] [PubMed]
  3. S. Gupta and D. Madoff, "Image-guided percutaneous needle biopsy in cancer diagnosis and staging," Tech. Vasc. Interv. Radiol. 10, 88-101 (2007).
    [CrossRef] [PubMed]
  4. B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
    [CrossRef] [PubMed]
  5. Q1. A. M. Zysk and S. A. Boppart, "Computational methods for analysis of human breast tumor tissue in optical coherence tomography images," J. Biomed. Opt. 11(2006).
    [CrossRef] [PubMed]
  6. P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
    [CrossRef] [PubMed]
  7. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
    [CrossRef]
  8. V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
    [CrossRef] [PubMed]
  9. M. A. S. Frable and W. J. Frable, "Fine-Needle Aspiration Biopsy of Salivary-Glands," Laryngoscope 101, 245-249 (1991).
    [CrossRef] [PubMed]
  10. S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
    [PubMed]
  11. S. Klein, "Evaluation of Palpable Breast Masses," American Family Physician 71, 1731-1738 (2005).
    [PubMed]
  12. Q2. N. S. Scott Boerner, "Specimen adequacy and false-negative diagnosis rate in fine-needle aspirates of palpable breast masses," Cancer Cytopathology 84, 344-348 (1998).
    [CrossRef]
  13. W. H. Hindle and E. C. Chen, "Accuracy of mammographic appearances after breast fine-needle aspiration," American Journal of Obstetrics and Gynecology 176, 1286-1290 (1997).
    [CrossRef] [PubMed]
  14. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  15. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  16. Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
    [CrossRef] [PubMed]
  17. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, "Imaging needle for optical coherence tomography," Opt. Lett. 25, 1520-1522 (2000).
    [CrossRef]
  18. M. Johns, C. A. Giller, D. German, and H. Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe., " Opt. Express 13, 4828-4842 (2005).
    [CrossRef] [PubMed]
  19. Y. Z. Zhu and A. B. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 17, 447-449 (2005).
    [CrossRef]
  20. W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optics microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
    [CrossRef]
  21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  22. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography " Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  23. Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
    [CrossRef]
  24. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
    [CrossRef] [PubMed]
  25. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef] [PubMed]
  26. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  27. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
    [CrossRef]
  28. M. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
    [CrossRef]
  29. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
    [CrossRef]
  30. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  31. Q5. C. Changho, A. Morosawa, and T. Sakai, "High-Speed Wavelength-Swept Laser Source With High-Linearity Sweep for Optical Coherence Tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
    [CrossRef]
  32. S. W. Lee, C. S. Kim, and B. M. Kim, "External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
    [CrossRef]
  33. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
    [CrossRef] [PubMed]
  34. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  35. W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
    [CrossRef]
  36. S. M. R. Motaghian Nezam, "High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography," Opt. Lett. 33, 1741-1743 (2008).
    [CrossRef] [PubMed]
  37. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
    [CrossRef] [PubMed]
  38. M. B. Pitman, (personal communication, 2007).

2008 (4)

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

Q5. C. Changho, A. Morosawa, and T. Sakai, "High-Speed Wavelength-Swept Laser Source With High-Linearity Sweep for Optical Coherence Tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

S. M. R. Motaghian Nezam, "High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography," Opt. Lett. 33, 1741-1743 (2008).
[CrossRef] [PubMed]

2007 (6)

S. W. Lee, C. S. Kim, and B. M. Kim, "External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

C. P. Price and L. J. Kricka, "Improving Healthcare Accessibility through Point-of-Care Technologies," Clin. Chem. 53, 1665-1675 (2007).
[CrossRef] [PubMed]

Y. Beaulieu, "Bedside echocardiography in the assessment of the critically ill," Crit. Care. Med. 35, S235-S249 (2007).
[CrossRef] [PubMed]

S. Gupta and D. Madoff, "Image-guided percutaneous needle biopsy in cancer diagnosis and staging," Tech. Vasc. Interv. Radiol. 10, 88-101 (2007).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

2006 (4)

Q1. A. M. Zysk and S. A. Boppart, "Computational methods for analysis of human breast tumor tissue in optical coherence tomography images," J. Biomed. Opt. 11(2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography " Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

2005 (10)

M. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

S. Klein, "Evaluation of Palpable Breast Masses," American Family Physician 71, 1731-1738 (2005).
[PubMed]

M. Johns, C. A. Giller, D. German, and H. Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe., " Opt. Express 13, 4828-4842 (2005).
[CrossRef] [PubMed]

Y. Z. Zhu and A. B. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 17, 447-449 (2005).
[CrossRef]

2004 (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

2003 (3)

2002 (1)

2000 (2)

1999 (1)

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

1998 (1)

Q2. N. S. Scott Boerner, "Specimen adequacy and false-negative diagnosis rate in fine-needle aspirates of palpable breast masses," Cancer Cytopathology 84, 344-348 (1998).
[CrossRef]

1997 (2)

W. H. Hindle and E. C. Chen, "Accuracy of mammographic appearances after breast fine-needle aspiration," American Journal of Obstetrics and Gynecology 176, 1286-1290 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

1995 (1)

S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
[PubMed]

1991 (1)

M. A. S. Frable and W. J. Frable, "Fine-Needle Aspiration Biopsy of Salivary-Glands," Laryngoscope 101, 245-249 (1991).
[CrossRef] [PubMed]

Adie, S. G.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Aguirre, A. D.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Armstrong, J. J.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Barton, J. K.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Beaulieu, Y.

Y. Beaulieu, "Bedside echocardiography in the assessment of the critically ill," Crit. Care. Med. 35, S235-S249 (2007).
[CrossRef] [PubMed]

Boppart, S. A.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Q1. A. M. Zysk and S. A. Boppart, "Computational methods for analysis of human breast tumor tissue in optical coherence tomography images," J. Biomed. Opt. 11(2006).
[CrossRef] [PubMed]

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Bourquin, S.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Bressner, J. E.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

Cable, A. E.

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Changho, C.

Q5. C. Changho, A. Morosawa, and T. Sakai, "High-Speed Wavelength-Swept Laser Source With High-Linearity Sweep for Optical Coherence Tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Chen, E. C.

W. H. Hindle and E. C. Chen, "Accuracy of mammographic appearances after breast fine-needle aspiration," American Journal of Obstetrics and Gynecology 176, 1286-1290 (1997).
[CrossRef] [PubMed]

Chen, Y.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Chen, Z.

Chen, Z. P.

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Chinn, S. R.

Choma, M.

M. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

Chudoba, C.

Connolly, J. L.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Desjardins, A. E.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Drexler, W.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Frable, M. A. S.

M. A. S. Frable and W. J. Frable, "Fine-Needle Aspiration Biopsy of Salivary-Glands," Laryngoscope 101, 245-249 (1991).
[CrossRef] [PubMed]

Frable, W. J.

M. A. S. Frable and W. J. Frable, "Fine-Needle Aspiration Biopsy of Salivary-Glands," Laryngoscope 101, 245-249 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

German, D.

Giller, C. A.

Goldberg, B. D.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

Gupta, S.

S. Gupta and D. Madoff, "Image-guided percutaneous needle biopsy in cancer diagnosis and staging," Tech. Vasc. Interv. Radiol. 10, 88-101 (2007).
[CrossRef] [PubMed]

Halpern, E.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

Hindle, W. H.

W. H. Hindle and E. C. Chen, "Accuracy of mammographic appearances after breast fine-needle aspiration," American Journal of Obstetrics and Gynecology 176, 1286-1290 (1997).
[CrossRef] [PubMed]

Hsiung, P.-L.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Hsu, K.

Huber, R.

Iftimia, N.

Iftimia, N. V.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

Izatt, J.

M. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

Jang, I.-K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Jiang, J. Y.

Johns, M.

Kim, B. M.

S. W. Lee, C. S. Kim, and B. M. Kim, "External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Kim, C. S.

S. W. Lee, C. S. Kim, and B. M. Kim, "External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Klein, S.

S. Klein, "Evaluation of Palpable Breast Masses," American Family Physician 71, 1731-1738 (2005).
[PubMed]

Ko, T.

Ko, T. H.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Kricka, L. J.

C. P. Price and L. J. Kricka, "Improving Healthcare Accessibility through Point-of-Care Technologies," Clin. Chem. 53, 1665-1675 (2007).
[CrossRef] [PubMed]

Lee, S. W.

S. W. Lee, C. S. Kim, and B. M. Kim, "External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Leight, M. S.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Leitgeb, R. A.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Li, X.

Liu, H.

Madoff, D.

S. Gupta and D. Madoff, "Image-guided percutaneous needle biopsy in cancer diagnosis and staging," Tech. Vasc. Interv. Radiol. 10, 88-101 (2007).
[CrossRef] [PubMed]

Mandreker, S. R. S.

S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
[PubMed]

Mashimo, H.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Menezes, S.

S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
[PubMed]

Milner, T. E.

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Morosawa, A.

Q5. C. Changho, A. Morosawa, and T. Sakai, "High-Speed Wavelength-Swept Laser Source With High-Linearity Sweep for Optical Coherence Tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Motaghian Nezam, S. M. R.

Nadkarni, N. S.

S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
[PubMed]

Nelson, J. S.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Nguyne, F. T.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Oh, W. Y.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

Paduch, A.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Pantanowitz, L.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Park, B. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Pham, T. H.

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Phatak, D.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Pinto, R. G. W.

S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
[PubMed]

Pitman, M. B.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

Pitris, C.

Povazay, B.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Price, C. P.

C. P. Price and L. J. Kricka, "Improving Healthcare Accessibility through Point-of-Care Technologies," Clin. Chem. 53, 1665-1675 (2007).
[CrossRef] [PubMed]

Raza, S.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Reed, W. A.

Rollins, A. M.

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

Sakai, T.

Q5. C. Changho, A. Morosawa, and T. Sakai, "High-Speed Wavelength-Swept Laser Source With High-Linearity Sweep for Optical Coherence Tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Sampson, D. D.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Sarunic, M.

Sattman, H.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Saxer, C.

Schnitt, S. J.

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

Schnitzer, M. J.

Scott Boerner, N. S.

Q2. N. S. Scott Boerner, "Specimen adequacy and false-negative diagnosis rate in fine-needle aspirates of palpable breast masses," Cancer Cytopathology 84, 344-348 (1998).
[CrossRef]

Shishkov, M.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Sivak, M. V.

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

Srinivas, S. M.

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Swanson, E. A.

Taira, K.

Tearney, G.

Tearney, G. J.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Tumlinson, A. R.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Unterhuber, A.

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

Vakoc, B.

Vakoc, B. J.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

Wang, A. B.

Y. Z. Zhu and A. B. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 17, 447-449 (2005).
[CrossRef]

Westphal, V.

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

Willis, J.

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

Xiang, S.

Yan, M. F.

Yang, C.

Yun, S.

Yun, S. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

Zhao, Y.

Zhu, Y. Z.

Y. Z. Zhu and A. B. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 17, 447-449 (2005).
[CrossRef]

Zysk, A. M.

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

Q1. A. M. Zysk and S. A. Boppart, "Computational methods for analysis of human breast tumor tissue in optical coherence tomography images," J. Biomed. Opt. 11(2006).
[CrossRef] [PubMed]

Acta. Cytologica (1)

S. R. S. Mandreker, N. S. Nadkarni, R. G. W. Pinto, and S. Menezes, "Role of Fine-Needle Aspiration Cytology as the Initial Modality in the Investigation of Thyroid Lesions," Acta. Cytologica 39, 898-904 (1995).
[PubMed]

American Family Physician (1)

S. Klein, "Evaluation of Palpable Breast Masses," American Family Physician 71, 1731-1738 (2005).
[PubMed]

American Journal of Obstetrics and Gynecology (1)

W. H. Hindle and E. C. Chen, "Accuracy of mammographic appearances after breast fine-needle aspiration," American Journal of Obstetrics and Gynecology 176, 1286-1290 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring," Appl. Phys. Lett. 88, 103902-103903 (2006).
[CrossRef]

Cancer Cytopathology (1)

Q2. N. S. Scott Boerner, "Specimen adequacy and false-negative diagnosis rate in fine-needle aspirates of palpable breast masses," Cancer Cytopathology 84, 344-348 (1998).
[CrossRef]

Clin. Chem. (1)

C. P. Price and L. J. Kricka, "Improving Healthcare Accessibility through Point-of-Care Technologies," Clin. Chem. 53, 1665-1675 (2007).
[CrossRef] [PubMed]

Crit. Care. Med. (1)

Y. Beaulieu, "Bedside echocardiography in the assessment of the critically ill," Crit. Care. Med. 35, S235-S249 (2007).
[CrossRef] [PubMed]

Gastrointestinal Endoscopy (2)

P.-L. Hsiung, L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointestinal Endoscopy 62, 561-574 (2005).
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, J. Willis, M. V. SivakJr, and J. A. Izatt, "Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract," Gastrointestinal Endoscopy 61, 537-546 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

Q5. C. Changho, A. Morosawa, and T. Sakai, "High-Speed Wavelength-Swept Laser Source With High-Linearity Sweep for Optical Coherence Tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Q4. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. Quantum Electron. 5, 1200-1204 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. d. Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

S. W. Lee, C. S. Kim, and B. M. Kim, "External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Y. Z. Zhu and A. B. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett. 17, 447-449 (2005).
[CrossRef]

J. Biomed. Opt. (3)

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, "An automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy.," J. Biomed. Opt. 13, 014014 (2008).
[CrossRef] [PubMed]

Q1. A. M. Zysk and S. A. Boppart, "Computational methods for analysis of human breast tumor tissue in optical coherence tomography images," J. Biomed. Opt. 11(2006).
[CrossRef] [PubMed]

M. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

Laryngoscope (1)

M. A. S. Frable and W. J. Frable, "Fine-Needle Aspiration Biopsy of Salivary-Glands," Laryngoscope 101, 245-249 (1991).
[CrossRef] [PubMed]

Nat. Med. (1)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Opt. Express (9)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1879-1887 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing " Opt. Express 16, 1096-1103 (2008).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography " Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

M. Johns, C. A. Giller, D. German, and H. Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe., " Opt. Express 13, 4828-4842 (2005).
[CrossRef] [PubMed]

Opt. Lett. (8)

S. M. R. Motaghian Nezam, "High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography," Opt. Lett. 33, 1741-1743 (2008).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repitition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

Q3. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leight, A. Paduch, D. D. Sampson, F. T. Nguyne, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Opt. Lett. 32(2007).
[CrossRef] [PubMed]

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, "Imaging needle for optical coherence tomography," Opt. Lett. 25, 1520-1522 (2000).
[CrossRef]

W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optics microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

Tech. Vasc. Interv. Radiol. (1)

S. Gupta and D. Madoff, "Image-guided percutaneous needle biopsy in cancer diagnosis and staging," Tech. Vasc. Interv. Radiol. 10, 88-101 (2007).
[CrossRef] [PubMed]

Other (1)

M. B. Pitman, (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Miniature wavelength-swept laser source schematic (left). The output from a semiconductor gain medium illuminated a grating and was deflected via a resonant scanning mirror such that only one wavelength of light was amplified within the laser cavity. As the resonant mirror rotated, the laser’s output wavelength was swept in time. A photograph of the source (right) is shown adjacent to a pack of cards for scale.

Fig. 2.
Fig. 2.

OFDI Imaging setup. The output from the swept laser is directed through an 80/20 splitter into reference and sample arms. Each arm contains a circulator and signal reflection elements. The reference arm consists of a neutral density filter and a fixed mirror (M). The sample arm contains a two-axis galvanometer scanning system. The dual balanced detector (DET) output into a computer (CPU) for digitization and processing. The resonant scanner TTL pulse is used for acquisition triggering.

Fig. 3.
Fig. 3.

Laser trace showing ~2.5 full sweeps of the resonant scanner. Green trace is the TTL output from the resonant scanner and used as the system trigger.

Fig. 4.
Fig. 4.

Tuning bandwidth, shown in log scale. The peaks at the edges are a sampling artifact as a result of the sinusoidal non-linear drive of the resonant scanner resulting in increased time spent at the edges.

Fig. 5.
Fig. 5.

Characteristic fringe pattern (green) from a fixed reflector. Dual-balanced reference trace is shown in blue.

Fig. 6.
Fig. 6.

Axial point-spread function from a fixed reflector at 500 μm taken with a 43.5 dB attenuator in the sample arm. The forward sweep (blue) and backward sweep (green) are nearly identical in both SNR and axial resolution.

Fig. 7.
Fig. 7.

Signal roll-off as a function of depth for the forward (left) and backward (right) wavelength sweeps. Both sweeps can achieve > 1.75 nm ranging depth as measured by a 6 dB drop off in SNR from that at zero delay.

Fig. 8.
Fig. 8.

Laser output power as a function of time on full battery power. Minimal power loss is observed with over an hour of continuous use.

Fig. 9.
Fig. 9.

5 mm × 2.25 mm OFDI images from the ventral surface of a human forefinger. Forward (left), backward (middle), and combined (right) wavelength sweep images.

Metrics