Abstract

We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. André, "Status of the LMJ project," Proc. SPIE 3047, 38-42 (1996).
  2. W. H. Lowdermilk, "Status of the National Ignition Facility project," Proc. SPIE 3047, 16-37 (1996).
  3. S. G. Demos, M. Staggs, and M. R. Kozlowski, "Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers," Appl. Opt. 41, 3628-3633 (2002).
    [PubMed]
  4. H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, "The impact of laser damage on the lifetime of optical components in fusion lasers," Proc. SPIE 5273, 312-324 (2004).
  5. D. W. Camp et al., "Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces," Proc. SPIE 3244, 356-364 (1998).
  6. S. Papernov and A. W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002).
  7. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).
  8. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
    [PubMed]
  9. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, "Role of light intensification by cracks in optical breakdown on surfaces," J. Opt. Soc. Am. A 1810, 2607-2616 (2001).
  10. M. D. Feit and A. M. Rubenchik, "Influence of subsurface cracks on laser induced surface damage," Proc. SPIE 5273, 264-272 (2004).
  11. A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, "Laser-induced damage of fused silica at 355 nm initiated at scratches," Proc. SPIE 3244, 341-347 (1998).
  12. J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).
  13. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, "Progress in the understanding of fracture related damage of fused silica," Proc. SPIE 6720, 1-12 (2007).
  14. W. J. Rupp, "Mechanism of the diamond lapping process," Appl. Opt. 13, 1264-1269.
  15. P. Hed and D. F. Edwards, "Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage," Appl. Opt. 26, 4677-4680 (1987).
    [PubMed]
  16. J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damge in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
    [PubMed]
  17. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).
  18. Z. Wang, Y. Wu, Y. Dai, and S. Li, "Subsurface damage distribution in the lapping process," Appl. Opt. 47, 1417-1426 (2008).
    [PubMed]
  19. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).
  20. O. Fahnle, T. Wons, T. Koch, E. Debruyne, S Meeder, M. Booij, and S. M. Braat, "iTIRM as a tool for qualifying polishing processes," Appl. Opt. 41, 4036-4038 (2002)
    [PubMed]
  21. A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).
  22. L. Nevot and P. Croce, "Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich," J. Appl. Cryst. 8, 304-314 (1975).
  23. LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/tcs-sp2_key.
  24. J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, "Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica," Proc. SPIE 5991, 201-213 (2005).
  25. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, "Characterization of laser induced damage sites in optical components", Opt. Express 10, 1444-1450 (2005).
  26. Mark R. Kozlowski, and Stavros G. Demos "Properties of modified silica detected within laser-induced damage sites," Proc. SPIE 4102 106-111 (2000).
  27. S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
  28. P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, "Fluorescence of mitigated laser damages in fused silica," Proc. SPIE 5647, 188-196 (2005).

2008

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).

Z. Wang, Y. Wu, Y. Dai, and S. Li, "Subsurface damage distribution in the lapping process," Appl. Opt. 47, 1417-1426 (2008).
[PubMed]

2006

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

2005

2003

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).

2002

S. Papernov and A. W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002).

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

S. G. Demos, M. Staggs, and M. R. Kozlowski, "Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers," Appl. Opt. 41, 3628-3633 (2002).
[PubMed]

O. Fahnle, T. Wons, T. Koch, E. Debruyne, S Meeder, M. Booij, and S. M. Braat, "iTIRM as a tool for qualifying polishing processes," Appl. Opt. 41, 4036-4038 (2002)
[PubMed]

2001

1999

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).

1998

D. W. Camp et al., "Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces," Proc. SPIE 3244, 356-364 (1998).

1994

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

1987

1975

L. Nevot and P. Croce, "Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich," J. Appl. Cryst. 8, 304-314 (1975).

Ambard, C.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).

Bercegol, H.

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[PubMed]

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Birolleau, J-C

Bonneau, F.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Booij, M.

Braat, S. M.

Broyer, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Camp, D. W.

D. W. Camp et al., "Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces," Proc. SPIE 3244, 356-364 (1998).

Chase, L. L.

Combis, P.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Cormont, P.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).

Cottancin, E.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Croce, P.

L. Nevot and P. Croce, "Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich," J. Appl. Cryst. 8, 304-314 (1975).

Dai, Y.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Debruyne, E.

Demos, S. G.

Donohue, J. T.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Duparre, A.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).

Edwards, D. F.

Fahnle, O.

Feit, M. D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Fujimoto, J.

Funkenbusch, P. D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

Gallais, L.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Genin, F. Y.

Golini, D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

Hed, P.

Jacobs, S. D.

Koch, T.

Kozlowski, M. R.

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).

Lamaignere, L.

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[PubMed]

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Lambropoulos, J. C.

Li, S.

Lindquist, A.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

Loiseau, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Meeder, S

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Minoshima, K.

Natoli, J. Y.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Neauport, J.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[PubMed]

Nevot, L.

L. Nevot and P. Croce, "Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich," J. Appl. Cryst. 8, 304-314 (1975).

Papernov, S.

S. Papernov and A. W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002).

Pellarin, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Pellin, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Perra, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Pilon, F.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[PubMed]

Pistor, T. V.

Quesnel, D. J.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

Randi, J. C.

Rullier, J. L.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Rupp, W. J.

Salleo, A.

Savina, M.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Schmid, A. W.

S. Papernov and A. W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002).

Staggs, M.

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Steinert, J.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Truckenbrodt, H.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).

Tuaillon, J.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Vierne, J.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Wang, Z.

Ward, H.

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

Wons, T.

Wu, Y.

Wuttig, A.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).

Zhou, Y.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

Appl. Opt.

Appl. Phys. Lett.

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).

J. Am. Ceram. Soc.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).

J. Appl. Cryst.

L. Nevot and P. Croce, "Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich," J. Appl. Cryst. 8, 304-314 (1975).

J. Appl. Phys.

S. Papernov and A. W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002).

J. Appl. Phys. B

F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).

J. Non Cryst. Sol.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).

J. Opt. Soc. Am. A

Opt. Commun.

J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).

Opt. Express

Proc. SPIE

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).

D. W. Camp et al., "Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces," Proc. SPIE 3244, 356-364 (1998).

Other

H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, "The impact of laser damage on the lifetime of optical components in fusion lasers," Proc. SPIE 5273, 312-324 (2004).

LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/tcs-sp2_key.

J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, "Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica," Proc. SPIE 5991, 201-213 (2005).

Mark R. Kozlowski, and Stavros G. Demos "Properties of modified silica detected within laser-induced damage sites," Proc. SPIE 4102 106-111 (2000).

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, "Progress in the understanding of fracture related damage of fused silica," Proc. SPIE 6720, 1-12 (2007).

M. L. André, "Status of the LMJ project," Proc. SPIE 3047, 38-42 (1996).

W. H. Lowdermilk, "Status of the National Ignition Facility project," Proc. SPIE 3047, 16-37 (1996).

M. D. Feit and A. M. Rubenchik, "Influence of subsurface cracks on laser induced surface damage," Proc. SPIE 5273, 264-272 (2004).

A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, "Laser-induced damage of fused silica at 355 nm initiated at scratches," Proc. SPIE 3244, 341-347 (1998).

P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, "Fluorescence of mitigated laser damages in fused silica," Proc. SPIE 5647, 188-196 (2005).

Supplementary Material (1)

» Media 1: AVI (2861 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Sample preparation method of sample D1

Fig. 3.
Fig. 3.

Confocal microscopy principle: epifluorescence mode (left) and reflection mode (right)

Fig. 4.
Fig. 4.

Sample D2 - Confocal microscopy image of the surface in the MRF dimple on an area of 1.5×1.5 mm2, approximately 50 μm removed by MRF between border of the dimple and top of the figure. Same area measured in reflection at 458 nm (a), fluorescence in the 435–661nm spectral band for an excitation wavelength of 405 nm (b) and superposition of the two images (c) - 63 ×x objective

Fig. 5.
Fig. 5.

Sample D2, area of 1.5 × 1.5 mm2 - Standard microscopy image (in light grey) after light HF etching to reveal cracks superposed to Fig. 4(c) i.e. image in fluorescence mode before etching (red) and reflection mode (green) - 63 × objective

Fig. 6.
Fig. 6.

Sample D1 - Confocal microscopy in fluorescence mode in the 435 nm - 661 nm band (405 nm excitation). Diamond grinded surface is at the bottom, measurement carried out from the back side i.e. top of the figure. (Media 1). 63 × objective

Fig. 7.
Fig. 7.

Sample D1 - Fluorescence spectrum for different excitation wavelengths measured on SSD. Spectrums are normalized to 1 to be compared.

Fig. 8.
Fig. 8.

Sample D3 - Confocal microscopy image of the surface in the MRF dimple on an area of 90×90 μm2. Superposition of image in reflection mode at 458 nm (in green), and image in fluorescence mode in the 435–661nm spectral band for an excitation wavelength of 405 nm(in red)

Fig. 9.
Fig. 9.

Sample D3 - Confocal microscopy image in fluorescence mode (405 nm excitation wavelength) in the MRF dimple on an area of 20×20 μm2. Surface rendering is done to show structure of the SSD. Dimple surface is on the back of the image.

Fig. 10.
Fig. 10.

Sample D4 - Confocal microscopy image of the surface in the MRF dimple on an area of 373 × 373 μm2. Superposition of image in reflection mode at 458 nm (in green), and image in fluorescence mode in the 435-661nm spectral band for an excitation wavelength of 405 nm (in red) - 40× objective.

Fig. 11.
Fig. 11.

Fluorescence spectrum for an excitation wavelength of 405 nm of the oil based coolant and the SSD of sample D1.

Tables (2)

Tables Icon

Table 1. Sample preparation methods

Tables Icon

Table 2: Sample preparation to ease confocal microscopy observation

Metrics