Abstract

We propose and demonstrate a novel approach to optically generate ultrawideband (UWB) monocycle pulses by exploiting the parametric attenuation effect of sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) waveguide. The SFG process changes the continuous-wave pump into dark optical pulse pump with undershoot, resulting in the generation of UWB monocycle through the combination of input signal and output pump with proper relative time advance/delay. Pairs of polarity-inverted UWB monocycle pulses meeting the UWB definition of U. S. Federal Communications Commission (FCC, part 15) are successfully obtained in the experiment.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
    [CrossRef]
  2. G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
    [CrossRef]
  3. L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: an idea whose time has come," IEEE Signal Process. Mag. 21, 26-54 (2004).
    [CrossRef]
  4. J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultrawideband signals," J. Lightwave Technol. 25, 3219-3235 (2007).
    [CrossRef]
  5. F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
    [CrossRef]
  6. F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
    [CrossRef]
  7. F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron.Lett. 43, 119-121 (2007).
    [CrossRef]
  8. Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  9. C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
    [CrossRef]
  10. Q. Wang and J. P. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14667.
    [CrossRef] [PubMed]
  11. J. Q. Li, K. Xu, S. N. Fu, J. Wu, J. T. Lin, M. Tang, and P. Shum, "Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator," Opt. Express 15, 18156-18161 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-18156.
    [CrossRef] [PubMed]
  12. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-optical signal processing using χ(2) nonlinearities in guided-wave devices," J. Lightwave Technol. 24, 2579-2592 (2006).
    [CrossRef]
  13. J. Wang, J. Sun, C. Luo, and Q. Sun, "Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides," Opt. Express 13, 7405-7414 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405.
    [CrossRef] [PubMed]
  14. J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, "Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation," Opt. Express 15, 583-588 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-583.
    [CrossRef] [PubMed]
  15. J. Wang, J. Sun, and Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation," Opt. Express 15, 1690-1699 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1690.
    [CrossRef] [PubMed]
  16. Q. Wang and J. P. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
    [CrossRef]
  17. L. L. Yi, Y. Jaouen, W. S. Hu, Y. K. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16972.
    [CrossRef] [PubMed]
  18. B. Zhang, L. Zhang, L.-S. Yan, I. Fazal, J.-Y. Yang, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Express 15, 8317-8322 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8317.
    [CrossRef] [PubMed]
  19. M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
    [CrossRef]
  20. H. X. Miao, S.-D. Yang, C. Langrock, R. Roussev, M. M. Fejer, and A. M. Weiner, "Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides," J. Opt. Soc. Am. B 25, A41-A53 (2008).
    [CrossRef]

2008 (2)

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

H. X. Miao, S.-D. Yang, C. Langrock, R. Roussev, M. M. Fejer, and A. M. Weiner, "Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides," J. Opt. Soc. Am. B 25, A41-A53 (2008).
[CrossRef]

2007 (10)

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron.Lett. 43, 119-121 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, "Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation," Opt. Express 15, 583-588 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-583.
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation," Opt. Express 15, 1690-1699 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1690.
[CrossRef] [PubMed]

Q. Wang and J. P. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
[CrossRef]

L. L. Yi, Y. Jaouen, W. S. Hu, Y. K. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16972.
[CrossRef] [PubMed]

B. Zhang, L. Zhang, L.-S. Yan, I. Fazal, J.-Y. Yang, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Express 15, 8317-8322 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8317.
[CrossRef] [PubMed]

J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultrawideband signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Q. Wang and J. P. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14667.
[CrossRef] [PubMed]

J. Q. Li, K. Xu, S. N. Fu, J. Wu, J. T. Lin, M. Tang, and P. Shum, "Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator," Opt. Express 15, 18156-18161 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-18156.
[CrossRef] [PubMed]

2006 (4)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-optical signal processing using χ(2) nonlinearities in guided-wave devices," J. Lightwave Technol. 24, 2579-2592 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: an idea whose time has come," IEEE Signal Process. Mag. 21, 26-54 (2004).
[CrossRef]

2003 (2)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

Abtahi, M.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

Bigo, S.

Blais, S.

Fazal, I.

Fejer, M. M.

Fu, S. N.

Giannakis, G. B.

L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: an idea whose time has come," IEEE Signal Process. Mag. 21, 26-54 (2004).
[CrossRef]

Hirt, W.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Hu, W. S.

Huang, D.

Jaouen, Y.

Kumar, S.

Langrock, C.

LaRochelle, S.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Li, J. Q.

Lin, J. T.

Luo, C.

Magné, J.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

McGeehan, J. E.

Miao, H. X.

Mirshafiei, M.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Porcine, D.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Research, P.

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

Roussev, R.

Rusch, L. A.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

Shum, P.

Su, Y. K.

Sun, J.

Sun, Q.

Tang, M.

Wang, C.

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Wang, D.

Wang, J.

Wang, Q.

Weiner, A. M.

Willner, A. E.

Wu, J.

Xu, K.

Yan, L.-S.

Yang, J.-Y.

Yang, L. Q.

L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: an idea whose time has come," IEEE Signal Process. Mag. 21, 26-54 (2004).
[CrossRef]

Yang, S.-D.

Yao, J.

Yao, J. P.

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron.Lett. 43, 119-121 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Q. Wang and J. P. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultrawideband signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

Q. Wang and J. P. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14667.
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

Yi, L. L.

Zeng, F.

J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultrawideband signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron.Lett. 43, 119-121 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

Zhang, B.

Zhang, L.

Electron.Lett. (1)

F. Zeng, Q. Wang, and J. P. Yao, "All-optical UWB impulse generation based on cross phase modulation and frequency discrimination," Electron.Lett. 43, 119-121 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

IEEE Microwave Mag. (1)

G. R. Aiello and G. D. Rogerson, "Ultra-wideband wireless systems," IEEE Microwave Mag. 4, 36-47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Zeng and J. P. Yao, "An approach to ultra-wideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, "Ultra-wideband waveform generator based on optical pulse-shaping and FBG tuning," IEEE Photon. Technol. Lett. 20, 135-137 (2008).
[CrossRef]

IEEE Signal Process. Mag. (1)

L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: an idea whose time has come," IEEE Signal Process. Mag. 21, 26-54 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

J. Wang, J. Sun, C. Luo, and Q. Sun, "Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides," Opt. Express 13, 7405-7414 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405.
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, "Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation," Opt. Express 15, 583-588 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-583.
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, "Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation," Opt. Express 15, 1690-1699 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1690.
[CrossRef] [PubMed]

L. L. Yi, Y. Jaouen, W. S. Hu, Y. K. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16972.
[CrossRef] [PubMed]

B. Zhang, L. Zhang, L.-S. Yan, I. Fazal, J.-Y. Yang, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Express 15, 8317-8322 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8317.
[CrossRef] [PubMed]

Q. Wang and J. P. Yao, "Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter," Opt. Express 15, 14667-14672 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14667.
[CrossRef] [PubMed]

J. Q. Li, K. Xu, S. N. Fu, J. Wu, J. T. Lin, M. Tang, and P. Shum, "Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator," Opt. Express 15, 18156-18161 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-18156.
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup and operation principle for PPLN-based all-optical UWB monocycle generation using parametric attenuation effect of sum-frequency generation.

Fig. 2.
Fig. 2.

Optical spectra for UWB monocycle generation based on SFG in a PPLN waveguide. Inset shows the spectrum of sum-frequency wave in the 0.7 μm band.

Fig. 3.
Fig. 3.

Temporal waveforms for input signal, input CW pump, output pump (dark optical pulse with undershoot), and generated a pair of polarity-inverted UWB monocycle pulses. R1: positive UWB monocycle. R2: negative UWB monocycle.

Fig. 4.
Fig. 4.

Temporal waveforms for pairs of polarity-inverted UWB monocycle pulses with decreasing time advance (R3-R5: 80, 60, 40 ps) / delay (R6-R8: 70, 40, 20 ps) between input signal and output pump. R3-R5: positive UWB monocycle. R6-R8: negative UWB monocycle.

Fig. 5.
Fig. 5.

Envelopes of RF spectra for UWB monocycle pulses (RBW: 2 MHz). (a)(b) correspond to R1 and R2 shown in Fig. 3; (c)-(h) correspond to R3-R8 shown in Fig. 4.

Fig. 6.
Fig. 6.

(a) Center frequency, 10 dB bandwidth, and (b) fractional bandwidth as a function of relative time advance/delay between input signal and output pump corresponding to Fig. 5.

Fig. 7.
Fig. 7.

Schematic illustration of PPLN-based a pair of polarity-inverted UWB doublet generation. (a) Positive UWB doublet; (b) Negative UWB doublet

Fig. 8.
Fig. 8.

Schematic illustration of PPLN-based a pair of polarity-inverted UWB triplet generation. (a) Positive UWB triplet; (b) Negative UWB triplet.

Metrics