Abstract

We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal using four-wave-mixing (FWM) in a dispersion engineered chalcogenide glass waveguide. The 6 cm long planar rib waveguide 2 μm wide was fabricated in a 0.87 μm thick film etched 350nm deep to correspond to a design where waveguide dispersion offsets the material leading to near-zero dispersion in the C-band and broadband phase matched FWM. The reduced dimensions also enhance the nonlinear coefficient to 9800 W-1km-1 at 1550 nm enabling broadband conversion in a shorter device. In this work, we demonstrate 80 nm wavelength conversions with 1.65 dB of power penalty at a bit-error rate of 10-9. Spectral measurements and simulations indicate extended broadband operation is possible.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).
  3. E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000).
    [CrossRef]
  4. H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004).
    [CrossRef]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  6. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
    [CrossRef]
  7. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  8. V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
    [CrossRef] [PubMed]
  9. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007).
    [CrossRef] [PubMed]
  10. M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Opt. Express  16, 20374-20381 (2008).
    [CrossRef] [PubMed]
  11. K. Inoue, "Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber," IEEE Photon. Technol. Lett. 13, 338-340 (2001).
    [CrossRef]
  12. A. Bogris and D. Syvridis, "Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers," J. Lightwave Technol. 21, 1892-1902 (2003).
    [CrossRef]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
    [CrossRef]
  14. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall November 1983)
  15. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
    [CrossRef] [PubMed]
  16. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007).
    [CrossRef] [PubMed]
  17. M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing," IEEE Photonics Technol. Lett. 19, 1496-1498 (2007).
    [CrossRef]
  18. M. A. Foster et al., "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Nature 441, 960, (2006)
    [CrossRef] [PubMed]
  19. J. Hansryd et al. "Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier," Elect. Lett. 37, 584 (2001).
    [CrossRef]
  20. 1-to-40 Channel Multicasting in Wideband Parametric Amplifier," IEEE LEOS Winter Topicals, Sorrento Italy 1/2008
  21. J. M. Chavez Boggio et al. "730-nm optical parametric conversion from near- to short-wave infrared band," Opt. Express 16, 5435 (2008).
    [CrossRef]

2008 (3)

2007 (5)

2006 (2)

M. A. Foster et al., "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Nature 441, 960, (2006)
[CrossRef] [PubMed]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

2001 (2)

K. Inoue, "Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber," IEEE Photon. Technol. Lett. 13, 338-340 (2001).
[CrossRef]

J. Hansryd et al. "Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier," Elect. Lett. 37, 584 (2001).
[CrossRef]

2000 (1)

E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000).
[CrossRef]

1998 (1)

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998).
[CrossRef]

1997 (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Asobe, M.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Baker, N. J.

Bogris, A.

Bulla, D.

Bulla, D. A.

Chavez Boggio, J. M.

Choi, D. Y.

Choi, D-Y

Ciaramella, E.

E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000).
[CrossRef]

de Sterke, C. M.

Eggleton, B. J.

M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Opt. Express  16, 20374-20381 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing," IEEE Photonics Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007).
[CrossRef] [PubMed]

Finsterbusch, K.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster et al., "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Nature 441, 960, (2006)
[CrossRef] [PubMed]

Fu, L. B.

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Gai, X.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Hansryd, J.

J. Hansryd et al. "Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier," Elect. Lett. 37, 584 (2001).
[CrossRef]

Inoue, K.

K. Inoue, "Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber," IEEE Photon. Technol. Lett. 13, 338-340 (2001).
[CrossRef]

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Itabashi, S.-i.

Lamont, M. R.

Lamont, M. R. E.

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Luther-Davies, B.

Madden, S.

Madden, S. J.

Moss, D. J.

Mukherjee, B.

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998).
[CrossRef]

Nguyen, H. C.

Pelusi, M. D.

Ramamurthy, B.

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998).
[CrossRef]

Rode, A. V.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Simos, H.

Syvridis, D.

Ta'eed, V. G.

Takahashi, J.-i.

Takahashi, M.

Trillo, S.

E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000).
[CrossRef]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Elect. Lett. (1)

J. Hansryd et al. "Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier," Elect. Lett. 37, 584 (2001).
[CrossRef]

IEEE J. Sel. Area Commun. (1)

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Inoue, "Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber," IEEE Photon. Technol. Lett. 13, 338-340 (2001).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000).
[CrossRef]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing," IEEE Photonics Technol. Lett. 19, 1496-1498 (2007).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Nature (1)

M. A. Foster et al., "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Nature 441, 960, (2006)
[CrossRef] [PubMed]

Opt. Express (7)

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
[CrossRef] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007).
[CrossRef] [PubMed]

J. M. Chavez Boggio et al. "730-nm optical parametric conversion from near- to short-wave infrared band," Opt. Express 16, 5435 (2008).
[CrossRef]

M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Opt. Express  16, 20374-20381 (2008).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall November 1983)

1-to-40 Channel Multicasting in Wideband Parametric Amplifier," IEEE LEOS Winter Topicals, Sorrento Italy 1/2008

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparison of conventional wavelength conversion scheme and the scheme used in this work.

Fig. 2.
Fig. 2.

(a) The schematic plot of the waveguide and (b) the calculated group velocity dispersion of fundamental TM and TE mode (right).

Fig. 3.
Fig. 3.

Experimental setup for wavelength conversion by FWM.

Fig. 4.
Fig. 4.

Measured optical spectra after propagation through the As2S3 waveguide for the 40G/s input data pulses centered at (a) 1535 nm and (b) 1560 nm, with the wavelength offset of the CW probe varied. The solid blue line represents the experimental data, while the dashed red lines represent simulations using the SSFM. The inset shows an example spectrum at input.

Fig. 5.
Fig. 5.

(a) Output spectrum at the output of the waveguide. (b): BER versus received optical power for back-to-back (B2B) and converted signals. (c): Data eye diagram (65GHz optical bandwidth detector) for 40 Gb/s back-to-back input (B2B) and wavelength converted signals

Fig. 6.
Fig. 6.

Simulated comparison of the wavelength conversion efficiency of the dispersion engineered waveguide (with anomalous dispersion, solid line) to the As2S3 waveguide used in previous FWM experiments [9] (with normal dispersion, dashed line). The pump is centered at a wavelength of 1530 nm and the peak power is scaled (0.35 W and 1.62 W) such that the peak intensities are the same in both cases, although the propagation losses differ.

Metrics