Abstract

We demonstrate beam deflection and multiple channel communication in free space optical communications using microprisms integrated directly onto an array of vertical cavity surface emitting lasers (VCSELs). The design and fabrication of such a transmitter is presented, and shown to achieve beam deflection of up to 10° in a planar configuration. A location discovery application, for use within a distributed network, is put forward and analysed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sinzinger and J. Jahns, "Integrated micro-optical imaging-system with a high interconnection capacity fabricated in planar optics," Appl. Opt. 36, 4729-4735 (1997).
    [CrossRef] [PubMed]
  2. Speckled Computing Website, http://www.specknet.org.
  3. V. S. Hsu, J. M. Kahn, and K. S. J. Pister, "Wireless Communications for Smart Dust," Electron. Res. Lab. Memo.  M98/2, (1998).
  4. J. M. Kahn, R. H. Katz, and K. S. J. Pister, "Next Century Challenges: Mobile Networking for "Smart Dust," Mobicom ’99, (1999).
  5. J. Korvink and O. Paul, Editors, MEMS - a practical guide to design, analysis and applications (W. Andrew Publishing 2006).
    [CrossRef]
  6. H. Li and K. Iga, Editors, Vertical-Cavity Surface-Emitting Laser (Devices Springer Series in Photonics 2002).
  7. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
    [CrossRef]
  8. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
    [CrossRef] [PubMed]
  9. I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
    [CrossRef]
  10. Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
    [CrossRef]
  11. E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
    [CrossRef]
  12. C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
    [PubMed]
  13. A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
    [CrossRef]
  14. D. Sameoto, S.-W. Lee, and M. Parameswaran, "Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators," J. Micromech. Microeng. 18, 075023 (2008).
    [CrossRef]
  15. P. Mali, A. Sarkar, and R. Lal, "Facile fabrication of microfluidic systems using electron beam lithography," Lab Chip 6, 310-315 (2006).
    [CrossRef] [PubMed]
  16. J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
    [CrossRef]

2008 (4)

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

D. Sameoto, S.-W. Lee, and M. Parameswaran, "Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators," J. Micromech. Microeng. 18, 075023 (2008).
[CrossRef]

J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
[CrossRef]

2007 (1)

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

2006 (1)

P. Mali, A. Sarkar, and R. Lal, "Facile fabrication of microfluidic systems using electron beam lithography," Lab Chip 6, 310-315 (2006).
[CrossRef] [PubMed]

2003 (1)

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

2002 (2)

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

1998 (1)

V. S. Hsu, J. M. Kahn, and K. S. J. Pister, "Wireless Communications for Smart Dust," Electron. Res. Lab. Memo.  M98/2, (1998).

1997 (1)

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Ajmera, P. K.

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

Bernier, E.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Bisaillon, E.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Braeuer, A.

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

Brosseau, D. F.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Chen, S.

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Cho, T.-Y.

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Dannberg, P.

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Dholakia, K.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Goodwill, D.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Gu, Z.

J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
[CrossRef]

Hsieh, H.-H.

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Hsu, V. S.

V. S. Hsu, J. M. Kahn, and K. S. J. Pister, "Wireless Communications for Smart Dust," Electron. Res. Lab. Memo.  M98/2, (1998).

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Jahns, J.

Jin, Y.

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

Kahn, J. M.

V. S. Hsu, J. M. Kahn, and K. S. J. Pister, "Wireless Communications for Smart Dust," Electron. Res. Lab. Memo.  M98/2, (1998).

Kang, K.-N.

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

Karthe, W.

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

Kirk, A. G.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Lal, R.

P. Mali, A. Sarkar, and R. Lal, "Facile fabrication of microfluidic systems using electron beam lithography," Lab Chip 6, 310-315 (2006).
[CrossRef] [PubMed]

Lee, S.-W.

D. Sameoto, S.-W. Lee, and M. Parameswaran, "Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators," J. Micromech. Microeng. 18, 075023 (2008).
[CrossRef]

Liu, C.-C.

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Liu, S.-H.

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Lu, Y.

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Mali, P.

P. Mali, A. Sarkar, and R. Lal, "Facile fabrication of microfluidic systems using electron beam lithography," Lab Chip 6, 310-315 (2006).
[CrossRef] [PubMed]

Mann, G.

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Mony, M.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Parameswaran, M.

D. Sameoto, S.-W. Lee, and M. Parameswaran, "Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators," J. Micromech. Microeng. 18, 075023 (2008).
[CrossRef]

Park, D. S.-W.

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

Pister, K. S. J.

V. S. Hsu, J. M. Kahn, and K. S. J. Pister, "Wireless Communications for Smart Dust," Electron. Res. Lab. Memo.  M98/2, (1998).

Plant, D. V.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Sameoto, D.

D. Sameoto, S.-W. Lee, and M. Parameswaran, "Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators," J. Micromech. Microeng. 18, 075023 (2008).
[CrossRef]

Sarkar, A.

P. Mali, A. Sarkar, and R. Lal, "Facile fabrication of microfluidic systems using electron beam lithography," Lab Chip 6, 310-315 (2006).
[CrossRef] [PubMed]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Sinzinger, S.

Song, I.-H.

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Su, X.

J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
[CrossRef]

Wu, C.-C.

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Xu, P.

J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
[CrossRef]

Yamamoto, T.

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

Yang, C.-J.

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Yang, J.

J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
[CrossRef]

Zeitner, U.

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, "Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution," Appl. Phys. Lett. 91, 63-64 (2007).
[PubMed]

Electron. Res. Lab. Memo (1)

V. S. Hsu, J. M. Kahn, and K. S. J. Pister, "Wireless Communications for Smart Dust," Electron. Res. Lab. Memo.  M98/2, (1998).

IEEE Photon. Technol. Lett. (1)

E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, "Free-space optical link with spatial redundancy for misalignment tolerance," IEEE Photon. Technol. Lett. 14, 242-244 (2002).
[CrossRef]

J. Micromech. Microeng. (1)

D. Sameoto, S.-W. Lee, and M. Parameswaran, "Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators," J. Micromech. Microeng. 18, 075023 (2008).
[CrossRef]

Lab Chip (1)

P. Mali, A. Sarkar, and R. Lal, "Facile fabrication of microfluidic systems using electron beam lithography," Lab Chip 6, 310-315 (2006).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Microsyst. Technol. (2)

I.-H. Song, K.-N. Kang, Y. Jin, D. S.-W. Park, and P. K. Ajmera, "Microlens array fabrication by backside exposure using Fraunhofer diffraction," Microsyst. Technol. 14, 1285-1290 (2008).
[CrossRef]

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, "Application oriented complex polymer microoptic," Microsyst. Technol. 9, 304-307 (2003).
[CrossRef]

Nature (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Yang, X. Su, P. Xu, and Z. Gu, "Beam steering and deflecting device using step-based micro-blazed grating," Opt. Commun. 281, 3969-3976 (2008).
[CrossRef]

Other (4)

Speckled Computing Website, http://www.specknet.org.

J. M. Kahn, R. H. Katz, and K. S. J. Pister, "Next Century Challenges: Mobile Networking for "Smart Dust," Mobicom ’99, (1999).

J. Korvink and O. Paul, Editors, MEMS - a practical guide to design, analysis and applications (W. Andrew Publishing 2006).
[CrossRef]

H. Li and K. Iga, Editors, Vertical-Cavity Surface-Emitting Laser (Devices Springer Series in Photonics 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Resulting polymer thickness against electron-beam dose measured using a scanning electron microscope

Fig. 2.
Fig. 2.

(a) Surface profiles of three VCSELs with prisms of differing lateral dimensions. (b) SEM micrograph of a VCSEL with integrated microprism. Inset showing VCSEL contact pad (yellow), location of VCSEL emission aperture (red), and microprism angle profile (blue)

Fig. 3.
Fig. 3.

Emission lobe measurements of a microprism-steered VCSEL array. Inset shows a close-up of the deflection angle achieved.

Fig. 4.
Fig. 4.

Received signal strength measurements as the detector is scanned across the VCSEL array from left to right

Fig. 5.
Fig. 5.

Position error, of the detector obtained via the ratio of received signal powers from the transmitter (±1° error highlighted)

Metrics