Abstract

We report an experimental investigation of the nonlinear optical properties of nanoporous silicon optical waveguides measured at 1550 nm. The nonlinear properties including two-photon absorption, self-phase modulation, free-carrier absorption and free-carrier plasma dispersion are characterized and compared with similar measurements conducted on a conventional silicon-on-insulator ridge waveguide. Our study reveals that even waveguides that are 70% porous exhibit two-photon absorption and self-phase modulation coefficients that are comparable to those of crystalline silicon. The free-carrier absorption and dispersion in porous silicon waveguides are found to be significantly faster, and stronger than those reported for crystalline silicon.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
    [CrossRef]
  2. H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
    [CrossRef]
  3. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
    [CrossRef]
  4. B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
    [CrossRef]
  5. J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
    [CrossRef]
  6. G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
    [CrossRef]
  7. L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-76 (1997).
    [CrossRef]
  8. H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
    [CrossRef]
  9. T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
    [CrossRef]
  10. F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
    [CrossRef]
  11. F. Z. Henari, "Two photon absorption of porous silicon," Laser Phys. 15, 1634-1636 (2005).
  12. S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
    [CrossRef]
  13. A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
    [CrossRef]
  14. T. E. Murphy, J. T. Hastings, and H. I. Smith, "Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides," J. Lightwave Technol. 19, 1938-1942 (2001).
    [CrossRef]
  15. G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
    [CrossRef]
  16. L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007).
    [CrossRef] [PubMed]
  17. R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]
  18. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  20. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4094.
    [CrossRef] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  22. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5524.
    [CrossRef] [PubMed]
  23. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

F. Z. Henari, "Two photon absorption of porous silicon," Laser Phys. 15, 1634-1636 (2005).

2004 (3)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

2001 (2)

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, "Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides," J. Lightwave Technol. 19, 1938-1942 (2001).
[CrossRef]

2000 (1)

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

1999 (1)

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

1998 (2)

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

1997 (3)

L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-76 (1997).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

1996 (1)

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

1995 (2)

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

1994 (1)

G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
[CrossRef]

1992 (1)

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Agrawal, G. P.

Almeida, V. R.

Amato, G.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

Anderson, W. A.

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

Arens-Fischer, R.

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Arrand, H. F.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Barrios, C. A.

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Benson, T. M.

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Berger, M. G.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Blau, W. J.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

Boarino, L.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

Borini, S.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

Boyraz, O.

Bozeat, R. J.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

Camarchia, V.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

Canham, L. T.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Chen, X.

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

Daimon, M.

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Dneprovskii, V. S.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

Dulkeith, E.

Ferrara, V. L.

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Fiore, O.

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Francia, G. D.

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Gelloz, B.

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

Hastings, J. T.

Henari, F. Z.

F. Z. Henari, "Two photon absorption of porous silicon," Laser Phys. 15, 1634-1636 (2005).

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

Iodice, M.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

Jalali, B.

Jiao, K. L.

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

Kanemitsu, Y.

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

Karavanskii, V. A.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

Kershaw, S.

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

Koonath, P.

Koshida, N.

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

Krüger, M.

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

Krüger, M. G.

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

Krüuger, M.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

Kwok, H. S.

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

Lettieri, S.

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Lipson, M.

Loni, A.

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Lüth, H.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Maddalena, P.

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Matsumoto, T.

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

Mimura, H.

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

Morgenstern, K.

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

Munder, H.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Murphy, T. E.

Ninno, D.

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Pavesi, L.

L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-76 (1997).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Raghunathan, V.

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Rossi, A. M.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

Sewell, P.

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

Shen, W. P.

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

Smith, H. I.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

Thönissen, M.

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

Vincent, G.

G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
[CrossRef]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Vlasov, Y. A.

Xu, Q.

Yin, L.

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

Zheng, J. P.

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

Appl. Phys. Lett. (6)

J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, "Highly sensitive photodetector using porous silicon," Appl. Phys. Lett. 61, 459-461 (1992).
[CrossRef]

G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
[CrossRef]

F. Z. Henari, K. Morgenstern, W. J. Blau, V. A. Karavanskii, and V. S. Dneprovskii, "Third-order optical nonlinearity and all-optical switching in porous silicon," Appl. Phys. Lett. 67, 323-325 (1995).
[CrossRef]

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, "High-quality porous silicon buried waveguides," Appl. Phys. Lett. 78, 3003-3005 (2001).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 μm pulses in high-indexcontrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Electron. Lett. (1)

H. F. Arrand, T. M. Benson, A. Loni, M. G. Krüger, M. Thönissen, and H. Lüth, "Self-aligned porous silicon optical waveguides," Electron. Lett. 33, 1724-1725 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. F. Arrand, T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Krüuger, M. Thönissen, and H. Lüth, "The applications of porous silicon to optical waveguiding technology," IEEE J. Sel. Top. Quantum Electron. 4, 975-982 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. F. Arrand, T. M. Benson, A. Loni, R. Arens-Fischer, M. Krüger, M. Thönissen, H. Lüth, and S. Kershaw, "Novel liquid sensor based on porous silicon optical waveguides," IEEE Photon. Technol. Lett. 10, 1467-1469 (1998).
[CrossRef]

J. Appl. Phys. (1)

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

J. Electrochem. Soc. (1)

T. Matsumoto, M. Daimon, H. Mimura, Y. Kanemitsu, and N. Koshida, "Optically induced absorption in porous silicon and its application to logic gates," J. Electrochem. Soc. 142, 3528-3533 (1995).
[CrossRef]

J. Lightwave Technol. (2)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, "Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides," J. Lightwave Technol. 19, 1938-1942 (2001).
[CrossRef]

Laser Phys. (1)

F. Z. Henari, "Two photon absorption of porous silicon," Laser Phys. 15, 1634-1636 (2005).

Opt. Commun. (1)

S. Lettieri, O. Fiore, P. Maddalena, D. Ninno, G. D. Francia, and V. L. Ferrara, "Nonlinear optical refraction of free-standing porous silicon layers," Opt. Commun. 168, 383-391 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Riv. Nuovo Cimento (1)

L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-76 (1997).
[CrossRef]

Thin Solid Films (1)

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning laser lithography system used to produce porous silicon waveguides through a process of laser-induced oxidation [13]. The inset scanning electron micrograph shows the top-down view of the porous silicon cladding layer with 80% porosity.

Fig. 2.
Fig. 2.

Scanning electron micrographs comparing the cross sections of (a) silicon on insulator ridge waveguide and (b) porous silicon waveguide.

Fig. 3.
Fig. 3.

Free-carrier lifetime measurements of silicon waveguide and porous silicon waveguide. Inset: (a) zoomed in plot for the silicon waveguide, and (b) zoomed in plot for the porous silicon waveguide.

Fig. 4.
Fig. 4.

Experimental setup for measuring optical nonlinear parameters in SOI waveguides and porous silicon waveguides.

Fig. 5.
Fig. 5.

Output power vs. input coupled power (a) for the SOI ridge waveguide waveguide and (b) for the porous silicon waveguide considered here. The open squares indicate the measured data, whereas the curves show theoretical fits obtained from numerical simulation. The dashed curves indicate the fit obtained by neglecting free carrier effects, whereas the solid curves includes both two-photon absorption and free-carrier absorption.

Fig. 6.
Fig. 6.

(a) Upper: Experimentally measured output spectra for three different input intensities for the SOI ridge waveguide, showing spectral broadening caused by self-phase modulation. Lower: Corresponding numerical simulations used to match the measurements. (b) Upper: Experimentally measured output spectra for three different input intensities, for the porous silicon waveguide, showing blue-shift associated with free-carrier dispersion. Lower: Corresponding numerical simulations.

Tables (2)

Tables Icon

Table 1. Mode parameters and linear properties of SOI ridge waveguide and porous silicon waveguide.

Tables Icon

Table 2. Comparison of nonlinear properties measured from crystalline SOI ridge waveguide and porous silicon waveguide.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z u ( z , t ) = α 2 u ( z , t ) i β 2 2 2 t 2 u ( z , t )
+ [ i ω c n 2 β TPA 2 ] u ( z , t ) 2 A eff u ( z , t )
[ i ω c Δ n FCD ( z , t ) + 1 2 Δ α FCD ( z , t ) ] u ( z , t )
Δ α FCD ( z , t ) = σ FCD Δ N ( z , t )
Δ n FCD ( z , t ) = k FCD Δ N ( z , t )
t Δ N ( z , t ) = β TPA 2 h ̄ ω [ u ( z , t ) 2 A eff ] 2 Δ N ( z , t ) τ c

Metrics