Abstract

We demonstrate a new dual-quadrature spectral shearing interferometry technique appropriate for spectral phase characterization of arbitrary optical waveforms generated by line-by-line shaping of high-repetition-rate (~10 GHz) optical frequency combs. Spectral shearing interferograms are generated through sum-frequency mixing of the frequency comb field with a pair of reference tones generated via intensity modulation of a continuous-wave laser. Although related to the well known SPIDER method, our approach relaxes spectral resolution requirements and operates in a collinear interaction geometry compatible with the use of high sensitivity, aperiodically poled lithium niobate nonlinear waveguide devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner. "Spectral line by line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
    [CrossRef] [PubMed]
  2. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nat. Photonics 1, 463-467 (2007).
    [CrossRef]
  3. R. P. Scott, N. K. Fontaine, J. Cao, K. Okamoto, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "High-fidelity line-by-line optical waveform generation and complete characterization using FROG," Opt. Express 15, 9977-9988 (2007).
    [CrossRef] [PubMed]
  4. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
    [CrossRef]
  5. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
    [CrossRef]
  6. D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
    [CrossRef]
  7. R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic Publishers 2000).
  8. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  9. C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]
  10. Z. Jiang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control," J. Lightwave Technol. 24, 2487-2494 (2006).
    [CrossRef]
  11. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Characterization via Dual-Quadrature Spectral Interferometry," Opt. Express 17, 25-33 (2009).
    [CrossRef] [PubMed]
  12. L. Lepetit, G. Cheriaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  13. H. Miao, S.-D. Yang, C. Langrock, R. V. Rostislav, M. M. Fejer, and A. M. Weiner, "Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides," J. Opt. Soc. Am. B 25, A41-A53 (2008).
    [CrossRef]
  14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinearly Broadened Phase-Modulated Continuous-Wave Laser Frequency Combs Characterized using DPSK Decoding," Opt. Express 16, 2520-2527 (2008).
    [CrossRef] [PubMed]
  15. C. Langrock and M. M. Fejer, "Background-free collinear autocorrelation and frequency-resolved optical gating using mode multiplexing and demultiplexing in reverse-proton-exchange aperiodically poled lithium niobate waveguides," Opt. Lett. 32, 2306-2308 (2007).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (3)

2006 (2)

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control," J. Lightwave Technol. 24, 2487-2494 (2006).
[CrossRef]

2005 (1)

2004 (1)

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

1999 (1)

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

1998 (1)

1995 (1)

1993 (1)

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Cao, J.

Cheriaux, G.

Fejer, M. M.

Fontaine, N. K.

Heritage, J. P.

Huang, C. B.

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinearly Broadened Phase-Modulated Continuous-Wave Laser Frequency Combs Characterized using DPSK Decoding," Opt. Express 16, 2520-2527 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

Iaconis, C.

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
[CrossRef]

Jiang, Z.

Joffre, M.

Kane, D. J.

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Kolner, B. H.

Kominato, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Kurokawa, T.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Langrock, C.

Leaird, D. E.

Lepetit, L.

Mandai, K.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Miao, H.

Miyamoto, D.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Okamoto, K.

R. P. Scott, N. K. Fontaine, J. Cao, K. Okamoto, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "High-fidelity line-by-line optical waveform generation and complete characterization using FROG," Opt. Express 15, 9977-9988 (2007).
[CrossRef] [PubMed]

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Park, S. G.

Rostislav, R. V.

Scott, R. P.

Seo, D. S.

Shibata, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Shioda, T.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Supradeepa, V. R.

Takahashi, H.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Takeda, S.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Takiguchi, K.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Trebino, R.

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Tsuda, H.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
[CrossRef]

Weiner, A. M.

Yang, S.-D.

Yoo, S. J. B.

Electron. Lett. (1)

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic Publishers 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Spectra of the signal comb (a), and the probe field (b).

Fig. 3.
Fig. 3.

Spectral shearing interferograms. (a) The full camera window at zero delay. (b-e) Zoom-in to the SFG term for four delays of 0, 25.1, 50.2, and 75.4 ps.

Fig. 4.
Fig. 4.

Retrieved spectral phase (a) and the calculated temporal intensity profile (b) of the pulse under detection. The spectral phase of adjacent comb lines are connected by lines.

Fig. 5.
Fig. 5.

(a) Residuals of ten independent DQ-SSI measurements. (b) Standard deviation of the measured spectral phase of each comb line.

Fig. 6.
Fig. 6.

(a) Measured spectrum of the optical frequency comb after compensating the phase to generate a short pulse. (b&d) Calculated temporal intensity profile with measured spectral phase (blue) and ideal flat spectral phase (red). (c) Measured spectral phase.

Fig. 7.
Fig. 7.

(a) Measured (blue), and calculated (red) autocorrelation before phase compensation. (b) Measured (blue) and calculated (red) autocorrelation after phase compensation.

Fig. 8.
Fig. 8.

(a) Phase retrieved from DQ-SSI method (blue), and an independent measurement method (red). (b) Phase difference between the two methods on a spectral line-by-line basis.

Fig. 9.
Fig. 9.

Measurement of a shaped pulse. (a) Phase retrieved from the DQ-SSI method (blue), and target phase applied to the shaper (red). (b) Phase difference between the two data sets in (a) on a spectral line-by-line basis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) e i ω s t and e i ϕ 1 e i ω c t + e i ϕ 2 e i ( ω c + Ω ) t
E SFG ( t ) E s ( t ) e i ω s t ( e i ϕ 1 e i ω c t + e i ϕ 2 e i ( ω c + Ω ) t )
S SFG ( ω ) E ˜ s ( ω ( ω s + ω c ) ) 2 + E ˜ s ( ω ( ω s + ω c + Ω ) ) 2
+ 2 E ˜ s ( ω ( ω s + ω c ) ) E ˜ s ( ω ( ω s + ω c + Ω ) )
× cos ( ψ ( ω ( ω s + ω c ) ) ψ ( ω ( ω s + ω c + Ω ) ) + ϕ 1 ϕ 2 )

Metrics