Abstract

We use a Fabry-Perot cavity to optically filter the output of a Ti:sapphire frequency comb to integer multiples of the original 1 GHz mode spacing. This effectively increases the pulse repetition rate, which is useful for several applications. In the case of low-noise microwave signal generation, such filtering leads to improved linearity of the high-speed photodiodes that detect the mode-locked laser pulse train. The result is significantly improved signal-to-noise ratio at the 10 GHz harmonic with the potential for a shot-noise limited single sideband phase noise floor near -168 dBc/Hz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005).
    [CrossRef] [PubMed]
  2. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).
  3. M. I. Skolnik, Radar Handbook, 3rd Edition (McGraw-Hill New York, 2008).
  4. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
    [CrossRef]
  5. A recent review of the work in this field is found in: Special issue on microwave photonics, J. Lightwave Tech. 262336-2810 (2008).
  6. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003).
    [CrossRef]
  7. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005).
    [CrossRef]
  8. T. Ozeki and E. H. Hara, "Measurement of nonlinear distortion in photodiodes," Electron. Lett. 12, 81-82 (1976)
  9. K. J. Williams and R. D. Esman, "Observation of photodetector nonlinearities," Electron. Lett. 28, 731-732 (1992).
    [CrossRef]
  10. K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994).
    [CrossRef]
  11. D. A. Tulchinsky and K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).
    [CrossRef]
  12. M. Currie and I. Vurgaftman, "Microwave phase retardation in saturated InGaAs photodetectors," IEEE Photon. Technol. Lett. 18, 1433-1435 (2006).
    [CrossRef]
  13. Y. Liu, S.-G. Park, and A. M. Weiner, "Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping," Opt. Lett. 21, 1762-1764 (1996).
    [CrossRef] [PubMed]
  14. S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
    [CrossRef]
  15. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
    [CrossRef]
  16. I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
    [CrossRef]
  17. J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
    [CrossRef]
  18. T. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006).
    [CrossRef] [PubMed]
  19. D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).
  20. Mention of specific products and trade names is for technical communication only and does not constitute an endorsement by NIST.
  21. T. Sizer, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
    [CrossRef]
  22. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003).
    [CrossRef]
  23. T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).
  24. P. J. Winzer, "Shot-noise formula for time-varying photon rates: a general derivation," J. Opt. Soc. Am. B 14, 2424-2429 (1997).
    [CrossRef]
  25. W. R. Bennett, Electrical Noise (Mc-Graw Hill New York, 1960), and references therein.
  26. F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005).
    [CrossRef] [PubMed]

2008

A recent review of the work in this field is found in: Special issue on microwave photonics, J. Lightwave Tech. 262336-2810 (2008).

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

2006

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

M. Currie and I. Vurgaftman, "Microwave phase retardation in saturated InGaAs photodetectors," IEEE Photon. Technol. Lett. 18, 1433-1435 (2006).
[CrossRef]

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

T. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006).
[CrossRef] [PubMed]

2005

D. A. Tulchinsky and K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005).
[CrossRef]

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005).
[CrossRef] [PubMed]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005).
[CrossRef] [PubMed]

2003

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

1999

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

1997

1996

1994

K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994).
[CrossRef]

1992

K. J. Williams and R. D. Esman, "Observation of photodetector nonlinearities," Electron. Lett. 28, 731-732 (1992).
[CrossRef]

1991

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

1989

T. Sizer, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
[CrossRef]

1976

T. Ozeki and E. H. Hara, "Measurement of nonlinear distortion in photodiodes," Electron. Lett. 12, 81-82 (1976)

Bartels, A.

Bergquist, J. C.

Braje, D.A.

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

Campbell, J. C.

F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005).
[CrossRef] [PubMed]

Chang, S.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Clairon, A.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Currie, M.

M. Currie and I. Vurgaftman, "Microwave phase retardation in saturated InGaAs photodetectors," IEEE Photon. Technol. Lett. 18, 1433-1435 (2006).
[CrossRef]

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994).
[CrossRef]

Danzmann, K.

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

Diddams, S. A.

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

T. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006).
[CrossRef] [PubMed]

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005).
[CrossRef] [PubMed]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003).
[CrossRef]

Esman, R. D.

K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994).
[CrossRef]

K. J. Williams and R. D. Esman, "Observation of photodetector nonlinearities," Electron. Lett. 28, 731-732 (1992).
[CrossRef]

Fortier, T.

Fortier, T. M.

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

Han, Y.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Hara, E. H.

T. Ozeki and E. H. Hara, "Measurement of nonlinear distortion in photodiodes," Electron. Lett. 12, 81-82 (1976)

Hollberg, L.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005).
[CrossRef] [PubMed]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003).
[CrossRef]

Ivanov, E. N.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003).
[CrossRef]

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Kirchner, M. S.

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

Laurent, Ph.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Lemonde, P.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

Liu, Y.

Luiten, A. N.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Ma, F.

F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005).
[CrossRef] [PubMed]

Mann, A. G.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

McFerran, J. J.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

McKinney, J. D.

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

Melloch, M. R.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

Niebauer, T. M.

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

Oates, C. W.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005).
[CrossRef] [PubMed]

Oskay, W. H.

Osterman, S.

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

Ozeki, T.

T. Ozeki and E. H. Hara, "Measurement of nonlinear distortion in photodiodes," Electron. Lett. 12, 81-82 (1976)

Park, S.-G.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

Y. Liu, S.-G. Park, and A. M. Weiner, "Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping," Opt. Lett. 21, 1762-1764 (1996).
[CrossRef] [PubMed]

Rüdiger, A.

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

Salomon, C.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Santarelli, G.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Schilling, R.

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

Siders, C. W.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

Siders, J. L. W.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

Sizer, T.

T. Sizer, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
[CrossRef]

Taylor, A. J.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

Tulchinsky, D. A.

D. A. Tulchinsky and K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).
[CrossRef]

Vurgaftman, I.

M. Currie and I. Vurgaftman, "Microwave phase retardation in saturated InGaAs photodetectors," IEEE Photon. Technol. Lett. 18, 1433-1435 (2006).
[CrossRef]

Wang, S.

F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005).
[CrossRef] [PubMed]

Weiner, A. M.

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

Y. Liu, S.-G. Park, and A. M. Weiner, "Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping," Opt. Lett. 21, 1762-1764 (1996).
[CrossRef] [PubMed]

Williams, K. J.

D. A. Tulchinsky and K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).
[CrossRef]

K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994).
[CrossRef]

K. J. Williams and R. D. Esman, "Observation of photodetector nonlinearities," Electron. Lett. 28, 731-732 (1992).
[CrossRef]

Wilpers, G.

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005).
[CrossRef] [PubMed]

Winkler, W.

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

Winzer, P. J.

Control

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005).
[CrossRef]

Electron. Lett.

T. Ozeki and E. H. Hara, "Measurement of nonlinear distortion in photodiodes," Electron. Lett. 12, 81-82 (1976)

K. J. Williams and R. D. Esman, "Observation of photodetector nonlinearities," Electron. Lett. 28, 731-732 (1992).
[CrossRef]

J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).

Eur. J. Phys D

D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).

IEEE J. Quantum Electron.

S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999).
[CrossRef]

T. Sizer, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electon.

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett.

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994).
[CrossRef]

D. A. Tulchinsky and K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005).
[CrossRef]

M. Currie and I. Vurgaftman, "Microwave phase retardation in saturated InGaAs photodetectors," IEEE Photon. Technol. Lett. 18, 1433-1435 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003).
[CrossRef]

J. Lightwave Tech.

A recent review of the work in this field is found in: Special issue on microwave photonics, J. Lightwave Tech. 262336-2810 (2008).

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).

Phys. Rev. Lett.

F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005).
[CrossRef] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999).
[CrossRef]

Other

M. I. Skolnik, Radar Handbook, 3rd Edition (McGraw-Hill New York, 2008).

Mention of specific products and trade names is for technical communication only and does not constitute an endorsement by NIST.

W. R. Bennett, Electrical Noise (Mc-Graw Hill New York, 1960), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. A 1 GHz, octave-spanning femtosecond Ti:sapphire laser is spectrally filtered with a Fabry-Perot cavity. Light reflected off the cavity is used to lock the Fabry-Perot on resonance with the laser frequency comb. The filter cavity output is detected with a P-I-N photodiode, and a bias-T is used to separate the direct and alternating currents.

Fig. 2.
Fig. 2.

(a) Full spectrum of the 1 GHz octave-spanning Ti:sapphire, measured at point A of Fig. 1. (b) Optical spectrum at frep = 1 GHz input to the optical filter cavity (red), measured at point B of Fig. 1. Optical spectrum at frep = 10 GHz output from the filter cavity (black). Coupling ratio, defined as Pout /Pin (blue dashed).

Fig. 3.
Fig. 3.

(a) Electrical waveforms recorded with a 50 GHz sampling oscilloscope for different average optical powers of a 1 GHz pulse train. (b) Variation in measured pulse width as a function of average optical power. (c) Microwave spectrum of 1 GHz pulse train for average optical power of 69.4 mW. (d) Microwave power in harmonics of 1 GHz pulse train illustrating saturation of higher frequency harmonics.

Fig. 4.
Fig. 4.

Power in 10 GHz microwave harmonic as a function of average photocurrent (and optical power) for 1 GHz pulse train, and for the same pulse train after filtering with 2, 5 and 10 GHz Fabry-Perot cavities. The inset shows the full microwave spectrum for the case of the 5 GHz filter cavity with ~ 23 mW incident on the photodiode.

Fig. 5.
Fig. 5.

The grey shaded region illustrates the maximum scatter of three separate measurements of the noise floor > 400 MHz from the 10 GHz carrier. The black line is the calculated shot-noise floor, assuming it depends on the average photocurrent.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δν = Ψ ( ν ) c 2 πL ,
δν = c 2 LF ,
Ψ ( ν ) 1 R .
I n = ( 1 R ) 2 m = 0 R n + mk 2 = R 2 n ( 1 R ) 2 ( 1 R k ) 2
V k f rep ~ 1 k n = 0 k 1 I n = 1 k 1 R 2 k 1 R 2 I 0
20 log 10 [ ( 1 k ) ( 1 R 2 k 1 R 2 ) ]

Metrics