Abstract

We report on a thermal imaging technique based on fluorescence polarization anisotropy measurements, which enables mapping the local temperature near nanometer-sized heat sources with 300 nm spatial resolution and a typical accuracy of 0.1 °C. The principle is demonstrated by mapping the temperature landscape around plasmonic nano-structures heated by near-infrared light. By assessing directly the molecules’ Brownian dynamics, it is shown that fluorescence polarization anisotropy is a robust and reliable method which overcomes the limitations of previous thermal imaging techniques. It opens new perspectives in medicine, nanoelectronics and nanofluidics where a control of temperature of a few degrees at the nanoscale is required.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
    [CrossRef] [PubMed]
  2. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007).
    [CrossRef]
  3. D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006).
    [CrossRef]
  4. G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
    [CrossRef]
  5. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
    [CrossRef] [PubMed]
  6. L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
    [CrossRef] [PubMed]
  7. G. L. Liu, J. Kim, L. Y. and L. P. Pee, "Optofluidic control using photothermal nanoparticles," Nat. Mater. 5, 27 (2006).
    [CrossRef]
  8. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001).
    [CrossRef] [PubMed]
  9. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
    [CrossRef]
  10. V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
    [CrossRef]
  11. A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).
  12. D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
    [CrossRef] [PubMed]
  13. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
    [CrossRef] [PubMed]
  14. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
    [CrossRef] [PubMed]
  15. H. M. Pollock and A. Hammiche, "Micro-thermal analysis: techniques and applications," J. Phys. D-Appl. Phys. 34, R23 (2001).
    [CrossRef]
  16. J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
    [CrossRef]
  17. K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994).
    [CrossRef] [PubMed]
  18. P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
    [CrossRef] [PubMed]
  19. G. A. Robinson, R. P. Lucht, and M. Laurendeau, "Two-color planar laser-induced fluorescence thermometry in aqueous solutions," Appl. Opt. 47, 2852 (2008).
    [CrossRef] [PubMed]
  20. B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
    [CrossRef]
  21. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002). Chap. 5.
  22. A. Kawski, "Fluorescence anisotropy: Theory and applications of rotational polarization," Crit. Rev. Anal. Chem. 23, 459 (1993).
    [CrossRef]
  23. R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
    [CrossRef] [PubMed]
  24. W. G., "Polarization of the fluorescence of macromolecules. 1. Theory and experiment method," Biochem J. 51, 145 (1952).
  25. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
    [CrossRef] [PubMed]
  26. R. F. Chen and R. L. Bowman, "Fluorescence polarization - measurement with ultraviolet-polarizing filters in a spectrophotofluorometer," Science 147, 729-732 (1965).
    [CrossRef] [PubMed]
  27. N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).
  28. N. S. Cheng, "Formula for the viscosity of a glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285 (2008).
    [CrossRef]
  29. D. Axelrod, "Carbocyanine dye orientation in red-cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).
    [CrossRef] [PubMed]
  30. Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
    [CrossRef]
  31. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
    [CrossRef]
  32. B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mat. 15, 1957 (2003).
    [CrossRef]

2008 (4)

P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
[CrossRef] [PubMed]

G. A. Robinson, R. P. Lucht, and M. Laurendeau, "Two-color planar laser-induced fluorescence thermometry in aqueous solutions," Appl. Opt. 47, 2852 (2008).
[CrossRef] [PubMed]

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

N. S. Cheng, "Formula for the viscosity of a glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285 (2008).
[CrossRef]

2007 (8)

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007).
[CrossRef]

G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
[CrossRef]

L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
[CrossRef]

A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).

2006 (5)

G. L. Liu, J. Kim, L. Y. and L. P. Pee, "Optofluidic control using photothermal nanoparticles," Nat. Mater. 5, 27 (2006).
[CrossRef]

D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006).
[CrossRef]

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

2005 (2)

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mat. 15, 1957 (2003).
[CrossRef]

2002 (2)

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

2001 (2)

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001).
[CrossRef] [PubMed]

H. M. Pollock and A. Hammiche, "Micro-thermal analysis: techniques and applications," J. Phys. D-Appl. Phys. 34, R23 (2001).
[CrossRef]

1994 (1)

K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994).
[CrossRef] [PubMed]

1993 (1)

A. Kawski, "Fluorescence anisotropy: Theory and applications of rotational polarization," Crit. Rev. Anal. Chem. 23, 459 (1993).
[CrossRef]

1991 (1)

N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).

1979 (1)

D. Axelrod, "Carbocyanine dye orientation in red-cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).
[CrossRef] [PubMed]

1965 (1)

R. F. Chen and R. L. Bowman, "Fluorescence polarization - measurement with ultraviolet-polarizing filters in a spectrophotofluorometer," Science 147, 729-732 (1965).
[CrossRef] [PubMed]

1952 (1)

W. G., "Polarization of the fluorescence of macromolecules. 1. Theory and experiment method," Biochem J. 51, 145 (1952).

Aigouy, L.

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

Alexis, F.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Armijo, M.

N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).

Arndt-Jovin, D. J.

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

Axelrod, D.

D. Axelrod, "Carbocyanine dye orientation in red-cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).
[CrossRef] [PubMed]

Balmer, R. S.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Bar-Cohen, A.

A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).

Barsic, D.

L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
[CrossRef] [PubMed]

Berciaud, S.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

Bergaud, C.

P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
[CrossRef] [PubMed]

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

Blab, G. A.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

Bowman, R. L.

R. F. Chen and R. L. Bowman, "Fluorescence polarization - measurement with ultraviolet-polarizing filters in a spectrophotofluorometer," Science 147, 729-732 (1965).
[CrossRef] [PubMed]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

Braun, D.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Brongersma, M.

L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
[CrossRef] [PubMed]

Cao, L.

L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
[CrossRef] [PubMed]

Chen, R. F.

R. F. Chen and R. L. Bowman, "Fluorescence polarization - measurement with ultraviolet-polarizing filters in a spectrophotofluorometer," Science 147, 729-732 (1965).
[CrossRef] [PubMed]

Cheng, N. S.

N. S. Cheng, "Formula for the viscosity of a glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285 (2008).
[CrossRef]

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

Clayton, A. H. A.

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

Cognet, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

Cortie, M. B.

D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006).
[CrossRef]

Davis, K. L.

K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994).
[CrossRef] [PubMed]

De, M.

G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
[CrossRef]

Dejugnat, C.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Disselhorst, J. A. J. M.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mat. 15, 1957 (2003).
[CrossRef]

Farokhzad, O. C.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Felix, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Freussner, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001).
[CrossRef] [PubMed]

Ghosh, P.

G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
[CrossRef]

Gneveckow, U.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

Gu, F. X.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Guichard, A.

L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
[CrossRef] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Hammiche, A.

H. M. Pollock and A. Hammiche, "Micro-thermal analysis: techniques and applications," J. Phys. D-Appl. Phys. 34, R23 (2001).
[CrossRef]

Han, G.

G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
[CrossRef]

Hanley, Q. S.

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

Heard, P. J.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Heine, M.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

Hilton, K. P.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Hong, S.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Jain, P. K.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007).
[CrossRef]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Jordan, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Jovin, T. M.

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

Karnik, R.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Kawski, A.

A. Kawski, "Fluorescence anisotropy: Theory and applications of rotational polarization," Crit. Rev. Anal. Chem. 23, 459 (1993).
[CrossRef]

Keir, A. M.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Kim, B.

P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
[CrossRef] [PubMed]

Kim, B. J.

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

Kim, J.

G. L. Liu, J. Kim, L. Y. and L. P. Pee, "Optofluidic control using photothermal nanoparticles," Nat. Mater. 5, 27 (2006).
[CrossRef]

Kuball, M.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Kulzer, F.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

L¨ow, P.

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
[CrossRef] [PubMed]

Langer, R. S.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Lasne, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

Laurendeau, M.

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Levy-Nissenbaum, E.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Lippitz, M.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, J. Kim, L. Y. and L. P. Pee, "Optofluidic control using photothermal nanoparticles," Nat. Mater. 5, 27 (2006).
[CrossRef]

Liu, K. K.

K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994).
[CrossRef] [PubMed]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001).
[CrossRef] [PubMed]

Lounis, B.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

Lucht, R. P.

Maali, A.

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

Maier-Hauff, K.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Martin, T.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Mohwald, H.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Morris, M. D.

K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994).
[CrossRef] [PubMed]

Mortier, M.

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mat. 15, 1957 (2003).
[CrossRef]

Orrit, M.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

Parak, W. J.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Periasamy, N.

N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).

Pissuwana, D.

D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006).
[CrossRef]

Pollock, H. M.

H. M. Pollock and A. Hammiche, "Micro-thermal analysis: techniques and applications," J. Phys. D-Appl. Phys. 34, R23 (2001).
[CrossRef]

Pomeroy, J. W.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
[CrossRef]

Rahim, E.

A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
[CrossRef]

Robinson, G. A.

Rogach, A. L.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001).
[CrossRef] [PubMed]

Rotello, V. M.

G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
[CrossRef]

Rothe, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Samson, B.

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

Scholz, R.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Skirtach, A. G.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Subramaniam, V.

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

Sukhorukov, G. B.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Susha, A. S.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Takama, N.

P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
[CrossRef] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

Tchebotareva, A. L.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

Thiesen, B.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Uren, M. J.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Valenzuelaa, S. M.

D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006).
[CrossRef]

van der Meer, H.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

van Dijk, M. A.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

Verkman, A. S.

N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).

von Deimling, A.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Waldoefner, N.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Wallis, D. J.

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Wang, A. Z.

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

Wang, P.

A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Wust, P.

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
[CrossRef]

Zondervan, R.

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

Anal. Chem. (2)

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001).
[CrossRef] [PubMed]

K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008).
[CrossRef]

J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005).
[CrossRef]

Biochem J. (1)

W. G., "Polarization of the fluorescence of macromolecules. 1. Theory and experiment method," Biochem J. 51, 145 (1952).

Biochem. (1)

N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).

Biophys. J. (4)

D. Axelrod, "Carbocyanine dye orientation in red-cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979).
[CrossRef] [PubMed]

A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002).
[CrossRef] [PubMed]

R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006).
[CrossRef] [PubMed]

Chem. Mat. (1)

B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mat. 15, 1957 (2003).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

A. Kawski, "Fluorescence anisotropy: Theory and applications of rotational polarization," Crit. Rev. Anal. Chem. 23, 459 (1993).
[CrossRef]

Ind. Eng. Chem. Res. (1)

N. S. Cheng, "Formula for the viscosity of a glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285 (2008).
[CrossRef]

J. Neuro-Oncol. (1)

K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007).
[CrossRef]

J. Phys. D-Appl. Phys. (1)

H. M. Pollock and A. Hammiche, "Micro-thermal analysis: techniques and applications," J. Phys. D-Appl. Phys. 34, R23 (2001).
[CrossRef]

Microgravity Sci. Technol. (1)

A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).

Nano Lett. (3)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007).
[CrossRef] [PubMed]

Nano Today (2)

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007).
[CrossRef]

Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007).
[CrossRef]

NanoBioTechnology (1)

G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007).
[CrossRef]

Nat. Mater. (1)

G. L. Liu, J. Kim, L. Y. and L. P. Pee, "Optofluidic control using photothermal nanoparticles," Nat. Mater. 5, 27 (2006).
[CrossRef]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006).
[CrossRef] [PubMed]

Science (2)

D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002).
[CrossRef] [PubMed]

R. F. Chen and R. L. Bowman, "Fluorescence polarization - measurement with ultraviolet-polarizing filters in a spectrophotofluorometer," Science 147, 729-732 (1965).
[CrossRef] [PubMed]

Small (1)

P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006).
[CrossRef]

Other (2)

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006).
[CrossRef]

B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002). Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental configuration and procedure. Two laser beams (for heating in the NIR and for probing at 473 nm) are overlapped prior to entering the objective of a confocal microscope. The sample is scanned through the focus to obtain an image. The collected fluorescence light is divided by a polarizing cube and sent to two avalanche photodiodes (APDs) measuring parallel and perpendicular polarizations. From these two maps, the FPA map is calculated using Eq. (1) and the temperature map is obtained using the calibration curve presented in Fig. 2. To illustrate the technique, a measurement on dispersed nanorods over a 30μm×30μm area is presented.

Fig. 2.
Fig. 2.

Fluorescence polarization anisotropy calibration. Theoretical curve (solid green line) of fluorescence polarization anisotropy as a function of the temperature for fluorescein dissolved in a glycerol-water (4:1) mixture, showing a good agreement with the experimental measurements (green diamonds) along with the calculated corrected curve (red solid line) associated to our high-NA objective. The chemical structure of fluorescein is represented in the inset.

Fig. 3.
Fig. 3.

(a), Scanning Electron Microscopy (SEM) image (3μm×3μm) of a 200 nm wide and 40 nm thick gold nanowire, corresponding to the area of interest. (b), (c), maps of the fluorescence intensities with parallel and perpendicular polarizations with respect to the incident light, no heating is performed in this first case. (d) fluorescence polarization anisotropy map calculated from images b and c using Eq. (1). (e) associated temperature distribution. (f), (g), maps of the fluorescence intensities with parallel and perpendicular polarizations while heating. (h), associated fluorescence polarization anisotropy map and (i) temperature distribution.

Fig. 4.
Fig. 4.

Average temperature of the gold nanowire as a function of the power of the heating NIR light showing an expected linearity.

Fig. 5.
Fig. 5.

Temperature mapping near dispersed gold nanorods. (a), Optical image (30μm×30 μm) of dispersed and agglomerated nanorods (NRs). (b), Fluorescence polarization anisot-ropy of the fluorescein molecules surrounding the gold nanorods and sensing the temperature variations. (c), Temperature map calculated from image (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = I I I 2 I
1 r = 1 r 0 ( 1 + τ F τ R )
τ R = ( T ) k B T

Metrics