Abstract

The writing of ultrabroadband Fiber Bragg Gratings (FBGs) is demonstrated in both hydrogen-free and hydrogen-loaded standard telecom fibers by the use of IR femtosecond pulses and a highly chirped first-order phase-mask. A high reflectivity filter providing a wavelength coverage of five telecom bands (E+S+C+L+U) is demonstrated over a single 35mm long grating inscribed in only 30s in H2-loaded SMF-28 fiber. Refractive index modulation of about 2.5×10-3 and 5×10-3 are obtained after a few second exposure time in both hydrogen-free and hydrogen-loaded SMF28 fibers. This report paves the way to the development of new broadband fiber-based optical components such as multi-wavelengths filters and sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354-361 (2005).
    [CrossRef]
  2. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, "Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask," Laser Chem. 2008, 416251 (2008).
  3. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, "Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm," Opt. Lett. 32, 454-456 (2007).
    [CrossRef] [PubMed]
  4. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, "Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating," Opt. Lett. 31, 2390-2392 (2006).
    [CrossRef] [PubMed]
  5. G. Androz, D. Faucher, M. Bernier, and R. Vallée, "Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings," Opt. Lett. 32, 1302-1304 (2007).
    [CrossRef] [PubMed]
  6. Y. Dai, X. Chen, J. Sun, and S. Xie, "Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts," Opt. Lett. 31, 311-313 (2006).
    [CrossRef] [PubMed]
  7. G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005).
    [CrossRef]
  8. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
    [CrossRef]
  9. J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, "Continuously chirped fiber Bragg gratings by femtosecond laser structuring," Opt. Lett. 33, 1560-1562 (2008).
    [CrossRef] [PubMed]
  10. R. Vallée, M. Bernier, A. Saliminia, and S. L. Chin, "Fiber Bragg Gratings Based on 1D Filamentation of Femtosecond Pulses," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), paper BWB3.
  11. D. J. Kitcher, A. Nand, S. A. Wade, R. Jones, G. W. Baxter, and S. F. Collins, "Directional dependence of spectra of fiber Bragg gratings due to excess loss," J. Opt. Soc. Am. A 23, 2906-2911 (2006).
    [CrossRef]
  12. M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
    [CrossRef]
  13. L. Dong, G. Qi, M. Marro, V. Bhatia, L. Hepbrunt, M. Swan, A. Collier, and D. Weidman, "Suppression of cladding mode coupling loss in fiber Bragg gratings," J. Lightwave Technol. 18, 1583-1590 (2000).
    [CrossRef]

2008

2007

2006

2005

G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005).
[CrossRef]

S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354-361 (2005).
[CrossRef]

2000

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

L. Dong, G. Qi, M. Marro, V. Bhatia, L. Hepbrunt, M. Swan, A. Collier, and D. Weidman, "Suppression of cladding mode coupling loss in fiber Bragg gratings," J. Lightwave Technol. 18, 1583-1590 (2000).
[CrossRef]

1995

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Androz, G.

Baxter, G. W.

Bennion, I.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Bernier, M.

Bhatia, V.

Brambilla, G.

Brochu, G.

G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005).
[CrossRef]

Burghoff, J.

Chen, X.

Chin, S. L.

Collier, A.

Collins, S. F.

Dai, Y.

Dong, L.

Durkin, M.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Faucher, D.

Fermann, M. E.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Fuchs, U.

Galvanauskas, A.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Grudinin, A.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Harter, D.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Hepbrunt, L.

Ibsen, M.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Jones, R.

Kitcher, D. J.

Laming, R.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

LaRochelle, S.

G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005).
[CrossRef]

Limpert, J.

Marro, M.

Nand, A.

Nikogosyan, D. N.

Nolte, S.

Ortaç, B.

Qi, G.

Saliminia, A.

Schimpf, D.

Sheng, Y.

Slattery, S. A.

Slavick, R.

G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005).
[CrossRef]

Stutzki, F.

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Sun, J.

Swan, M.

Thomas, J.

Tünnermann, A.

Vallée, R.

Voigtländer, C.

Wade, S. A.

Weidman, D.

Wikszak, E.

Xie, S.

Zervas, M.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Appl. Phys. Lett.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

J. Lightwave Technol.

L. Dong, G. Qi, M. Marro, V. Bhatia, L. Hepbrunt, M. Swan, A. Collier, and D. Weidman, "Suppression of cladding mode coupling loss in fiber Bragg gratings," J. Lightwave Technol. 18, 1583-1590 (2000).
[CrossRef]

G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Other

R. Vallée, M. Bernier, A. Saliminia, and S. L. Chin, "Fiber Bragg Gratings Based on 1D Filamentation of Femtosecond Pulses," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), paper BWB3.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, "Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask," Laser Chem. 2008, 416251 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measured transmission and reflection spectra for a FBG written in H2-free fiber over 25mm at 3.5 mJ during 130s.

Fig. 2.
Fig. 2.

Reflection spectra measured from the short pitch-side (blue) and long-pitch side (pink) of the same grating than in Fig. 1 along with the measured group delay response (red) over the entire C band

Fig. 3.
Fig. 3.

Measured transmission and reflection spectra for a FBG written in H2-loaded fiber over 25mm at 3.5 mJ during 20s along with the corresponding telecom bands.

Fig. 4.
Fig. 4.

Reflection spectra measured from the short pitch-side (blue) and long-pitch side (pink) of the same grating than in Fig. 3 along with the measured group delay response (red) over the entire C band

Fig. 5.
Fig. 5.

Measured reflection spectrum for a FBG written in H2-loaded fiber over 35mm at 3.5 mJ during 30s along with the corresponding telecom bands.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( z ) 10 log ( 1 I R I 0 ) = 1.478 ( η ( z ) · Δ n ( z ) ) 2 α ( z )

Metrics