Abstract

We present the Twente Optical Perfusion Camera (TOPCam), a novel laser Doppler Perfusion Imager based on CMOS technology. The tissue under investigation is illuminated and the resulting dynamic speckle pattern is recorded with a high speed CMOS camera. Based on an overall analysis of the signal-to-noise ratio of CMOS cameras, we have selected the camera which best fits our requirements. We applied a pixel-by-pixel noise correction to minimize the influence of noise in the perfusion images. We can achieve a frame rate of 0.2 fps for a perfusion image of 128×128 pixels (imaged tissue area of 7×7 cm2) if the data is analyzed online. If the analysis of the data is performed offline, we can achieve a frame rate of 26 fps for a duration of 3.9 seconds. By reducing the imaging size to 128×16 pixels, this frame rate can be achieved for up to half a minute. We show the fast imaging capabilities of the system in order of increasing perfusion frame rate. First the increase of skin perfusion after application of capsicum cream, and the perfusion during an occlusion-reperfusion procedure at the fastest frame rate allowed with online analysis is shown. With the highest frame rate allowed with offline analysis, the skin perfusion revealing the heart beat and the perfusion during an occlusion-reperfusion procedure is presented. Hence we have achieved video rate laser Doppler perfusion imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bonner and R. Nossal, "Model for Laser Doppler Measurements of Blood Flow in Tissue," Appl. Opt. 20, 2097-2107 (1981).
    [CrossRef] [PubMed]
  2. Y. Aizu and T. Asakura, "Bio-Speckle Phenomena and Their Application to The Evaluation Of Blood Flow," Opt. Laser Technol. 23, 205-219 (1991).
    [CrossRef]
  3. A. Serov,W. Steenbergen, and F. F. M. de Mul, "Laser Doppler Perfusion ImagingWith A Complimentary Metal Oxide Semiconductor Image Sensor," Opt. Lett. 27, 300-302 (2002).
    [CrossRef]
  4. J. D. Briers, "Laser Doppler and Time-Varying Speckle: A reconciliation," J. Opt. Soc. Am. A 13, 45-350 (1996).
    [CrossRef]
  5. J. D. Briers, "Laser Doppler, Speckle and Related Techniques for Blood Perfusion Mapping and Imaging," Physiological Measurements 22, R35-R66 (2001).
    [CrossRef]
  6. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
    [CrossRef] [PubMed]
  7. M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, "Connecting laser Doppler perfusion imaging and laser speckle contrast analysis," Proc SPIE 6863, 68,630C-68,630C-8 (2008).
  8. A. F. Fercher and J. D. Briers, "Flow Visualization By Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
    [CrossRef]
  9. J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  10. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, "Review of laser speckle contrast techniques for visualizing tissue perfusion," Lasers Med. Sci. (2008).
    [PubMed]
  11. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
    [CrossRef] [PubMed]
  12. H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007).
    [CrossRef] [PubMed]
  13. Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
    [CrossRef] [PubMed]
  14. S. A. Pape, C. A. Skouras, and P. O. Byrne, "An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth," Burns 27, 233-239(7) (2001).
    [CrossRef] [PubMed]
  15. F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001).
    [CrossRef] [PubMed]
  16. E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of Depth of Burns By Laser Doppler Perfusion Imaging," Burns 27, 561-568 (2001).
    [CrossRef] [PubMed]
  17. R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
    [CrossRef] [PubMed]
  18. E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006).
    [CrossRef] [PubMed]
  19. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
    [CrossRef] [PubMed]
  20. F. F. M. de Mul, J. Blaauw, J. G. Aarnoudse, A. J. Smit, and G. Rakhorst, "Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies," J. Biomed. Opt. 12, 14,032 - 1 (2007).
    [CrossRef]
  21. A. Serov, B. Steinacher, and T. Lasser, "Full-Field Laser Doppler Perfusion Imaging and Monitoring With An Intelligent CMOS Camera," Opt. Express 13, 3681-3689 (2005).
    [CrossRef] [PubMed]
  22. A. Serov and T. Lasser, "High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor," Opt. Express 13, 6416-6428 (2005).
    [CrossRef] [PubMed]
  23. M. J. Draijer, E. Hondebrink, W. Steenbergen, and T. G. van Leeuwen, "Laser Doppler Perfusion Imaging with a high-speed CMOS-camera," Proc. SPIE 6631, 66310N (2007).
    [CrossRef]
  24. A. Serov, W. Steenbergen, and F. de Mul, "Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations," J. Opt. Soc. Am. A 18, 622-630 (2001).
    [CrossRef]
  25. E. Hecht, Optics, 3rd ed. (Addison-Wesley, 1998).
  26. G. Rieke, Detection of Light, 2nd ed. (Cambridge University Press, 2003).
  27. A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000).
    [CrossRef] [PubMed]
  28. Q. Gu, B. R. Hayes-Gill, and S. P. Morgan, "Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing," Appl. Opt. 47, 2061-2069 (2008).
    [CrossRef] [PubMed]

2008

2007

2006

E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006).
[CrossRef] [PubMed]

2005

2003

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

2002

2001

J. D. Briers, "Laser Doppler, Speckle and Related Techniques for Blood Perfusion Mapping and Imaging," Physiological Measurements 22, R35-R66 (2001).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001).
[CrossRef] [PubMed]

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of Depth of Burns By Laser Doppler Perfusion Imaging," Burns 27, 561-568 (2001).
[CrossRef] [PubMed]

A. Serov, W. Steenbergen, and F. de Mul, "Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations," J. Opt. Soc. Am. A 18, 622-630 (2001).
[CrossRef]

2000

A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000).
[CrossRef] [PubMed]

1999

J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

1996

J. D. Briers, "Laser Doppler and Time-Varying Speckle: A reconciliation," J. Opt. Soc. Am. A 13, 45-350 (1996).
[CrossRef]

1993

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

1991

Y. Aizu and T. Asakura, "Bio-Speckle Phenomena and Their Application to The Evaluation Of Blood Flow," Opt. Laser Technol. 23, 205-219 (1991).
[CrossRef]

1981

R. Bonner and R. Nossal, "Model for Laser Doppler Measurements of Blood Flow in Tissue," Appl. Opt. 20, 2097-2107 (1981).
[CrossRef] [PubMed]

A. F. Fercher and J. D. Briers, "Flow Visualization By Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Aizu, Y.

Y. Aizu and T. Asakura, "Bio-Speckle Phenomena and Their Application to The Evaluation Of Blood Flow," Opt. Laser Technol. 23, 205-219 (1991).
[CrossRef]

Asakura, T.

Y. Aizu and T. Asakura, "Bio-Speckle Phenomena and Their Application to The Evaluation Of Blood Flow," Opt. Laser Technol. 23, 205-219 (1991).
[CrossRef]

Beerthuizen, G. I.

F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001).
[CrossRef] [PubMed]

Black, M. J. M.

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Bonner, R.

Bray, R.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

Bray, R. C.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, "Laser Doppler, Speckle and Related Techniques for Blood Perfusion Mapping and Imaging," Physiological Measurements 22, R35-R66 (2001).
[CrossRef]

J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. D. Briers, "Laser Doppler and Time-Varying Speckle: A reconciliation," J. Opt. Soc. Am. A 13, 45-350 (1996).
[CrossRef]

A. F. Fercher and J. D. Briers, "Flow Visualization By Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Chen, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

de Mul, F.

de Mul, F. F. M.

Droog, E. J.

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of Depth of Burns By Laser Doppler Perfusion Imaging," Burns 27, 561-568 (2001).
[CrossRef] [PubMed]

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Duong, T. Q.

Essex, T. J. H.

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, "Flow Visualization By Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Forrester, K.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

Forrester, K. R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Frank, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Gong, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Gu, Q.

Hayes-Gill, B. R.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Holland, A.

E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006).
[CrossRef] [PubMed]

Huillier, J. P. L.

A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000).
[CrossRef] [PubMed]

Humeau, A.

A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000).
[CrossRef] [PubMed]

Kloppenberg, F. W.

F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001).
[CrossRef] [PubMed]

La Hei, E.

E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006).
[CrossRef] [PubMed]

Lasser, T.

Leonard, C.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

Lindsay, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

Luo, Q.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Martin, H.

E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006).
[CrossRef] [PubMed]

McArthur, R.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

McLean, N. R.

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

Morgan, S. P.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Niazi, Z. B. M.

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

Nossal, R.

Rapini, R.

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

Saumet, J. L.

A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000).
[CrossRef] [PubMed]

Scott, D.

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

Serov, A.

Sjoberg, F.

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of Depth of Burns By Laser Doppler Perfusion Imaging," Burns 27, 561-568 (2001).
[CrossRef] [PubMed]

Steenbergen, W.

Steinacher, B.

Stewart, C. J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

ten Duis, H. J.

F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001).
[CrossRef] [PubMed]

Tulip, J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

Zeng, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Burns

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993).
[CrossRef] [PubMed]

F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001).
[CrossRef] [PubMed]

E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of Depth of Burns By Laser Doppler Perfusion Imaging," Burns 27, 561-568 (2001).
[CrossRef] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003).
[CrossRef] [PubMed]

E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003).
[CrossRef] [PubMed]

J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Medical & Biological Engineering & Computing

A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher and J. D. Briers, "Flow Visualization By Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Opt. Express

Opt. Laser Technol.

Y. Aizu and T. Asakura, "Bio-Speckle Phenomena and Their Application to The Evaluation Of Blood Flow," Opt. Laser Technol. 23, 205-219 (1991).
[CrossRef]

Opt. Lett.

Physiological Measurements

J. D. Briers, "Laser Doppler, Speckle and Related Techniques for Blood Perfusion Mapping and Imaging," Physiological Measurements 22, R35-R66 (2001).
[CrossRef]

Other

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, "Review of laser speckle contrast techniques for visualizing tissue perfusion," Lasers Med. Sci. (2008).
[PubMed]

M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, "Connecting laser Doppler perfusion imaging and laser speckle contrast analysis," Proc SPIE 6863, 68,630C-68,630C-8 (2008).

S. A. Pape, C. A. Skouras, and P. O. Byrne, "An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth," Burns 27, 233-239(7) (2001).
[CrossRef] [PubMed]

F. F. M. de Mul, J. Blaauw, J. G. Aarnoudse, A. J. Smit, and G. Rakhorst, "Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies," J. Biomed. Opt. 12, 14,032 - 1 (2007).
[CrossRef]

M. J. Draijer, E. Hondebrink, W. Steenbergen, and T. G. van Leeuwen, "Laser Doppler Perfusion Imaging with a high-speed CMOS-camera," Proc. SPIE 6631, 66310N (2007).
[CrossRef]

E. Hecht, Optics, 3rd ed. (Addison-Wesley, 1998).

G. Rieke, Detection of Light, 2nd ed. (Cambridge University Press, 2003).

Supplementary Material (4)

» Media 1: AVI (3648 KB)     
» Media 2: AVI (21590 KB)     
» Media 3: AVI (11501 KB)     
» Media 4: AVI (15083 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1:
Fig. 1:

(a) Schematic overview of the measurement head (footprint 21,5×28 cm) and (b) photo of the entire TOPCam system.

Fig. 2:
Fig. 2:

(a) schematic overview of the signal part (/-hatched) and noise part (×-hatched) for determining the SNR from the power spectrum. (b) comparison between the measured SNR (×) and the SNR (solid line) calculated with Eq. (2).

Fig. 3:
Fig. 3:

The predicted SNR for possible CMOS cameras in high speed LDPI as a function of injected laser power per perfusion image pixel.

Fig. 4:
Fig. 4:

Typical examples of the perfusion values due to noise as a function of DC on day 1 (o), day 4 (x) and the correction curves based on a 3 rd order fit (dashed lines).

Fig. 5:
Fig. 5:

(a) DC-normalized raw perfusion image (128×128 pixels) of a piece of Delrin of 40 mm in diameter with a hole of 4 mm in diameter, placed on green surgery paper. The hole was filled with IntraLipid 20%. (b) the DC-normalized noise corrected perfusion image of the same sample.

Fig. 6:
Fig. 6:

The letters UT (‘University of Twente’) written with capsicum cream on the back of the hand of a volunteer. DC-normalized perfusion image (128×128 pixels) after (a) 3:41 min, (b) 4:32 min, (c) 5:13 min, (d) 7:14 min, (e) 11:36 min, (f) 12:08 min, (g) 13:48 min and (h) 15:13 min (Media 1). (i) Photo of the hand taken with the CMOS camera, the black square indicates the area in which the perfusion is measured.

Fig. 7:
Fig. 7:

Comparison of the readings of the TopCAM (x) and the Periflux5000 (Perimed, Sweden) during an occlusion-reperfusion procedure on the wrist of a volunteer (Media 2).

Fig. 8:
Fig. 8:

Continuous recording of 128 × 128 pixel perfusion images in the hand of a healthy subject. (a) the average value of each perfusion image as function of time. (b) – (d) perfusion images at times B, C and D in Fig. (a) and (e) the DC image at times B in Fig. (a) (Media 3).

Fig. 9:
Fig. 9:

Continuous recording of 128 × 16 pixel perfusion images in the wrist of a healthy subject. (a) the average value of each perfusion image as function of time. (b) and (c) perfusion images at times B and C in Fig. (a) (Media 4).

Tables (2)

Tables Icon

Table 1: Values of the different parameters in Eq. (2) used to predict the SNR of several high speed CMOS cameras.

Tables Icon

Table 2: Overview of the system speed averaged over 5 measurements for an 10-bits recording of a sequence of 1024 raw images at a frame rate of 27 kHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M 1 = 50 Hz 13.5 kHz ωS ( ω )
SNR CMOS = i AC 2 i noise 2
i AC 2 = γ ( 2 γ ) i DC 2 2 N
i DC = k back P laser # pixels π r 2 4 π Z 2 λ hc ηQ q e
N = A pixel A speckle
A speckle = λ 2 Ω = λ 2 R 2 π r 2
i noise 2 = 2 q e ( i DC + i dark + i AD ) B R

Metrics