Abstract

This work addressed the estimate of the directional emissivity in the mid-infrared (MIR) channel around 4.0 μm from MODIS data. A series of bidirectional reflectances in MODIS channel 22 (3.97 μm) were retrieved using the method developed by Tang and Li (Int. J. Remote Sens. 29, 4907, 2008) and then were used to estimate the directional emissivity in this channel with the aid of the BRDF model modified by Jiang and Li (Opt. Express 16, 19310, 2008). To validate the estimated directional emissivity, a cross-comparison of MODIS derived emissivities in channel 22 using the proposed method were performed with those provided by the MODIS land surface temperature/emissivity product MYD11B1 data. The results show that the proposed method for estimating the directional emissivity in MIR channel gives results comparable to those of MYD11B1 product with a Mean Error of -0.007 and a Root Mean Square Error of 0.024.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nilson and A. Kuusk, "A reflectance model for the homogeneous plant canopy and its inversion," Remote Sens. Environ. 27, 157-167 (1989).
    [CrossRef]
  2. J. L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data," J. Geophys. Res. 97, 20,455-20,468 (1992).
  3. W. Wanner, X. Li, and A. H. Strahler, "On the derivation of kernels for kernel-driven models of bidirectional reflectance," J. Geophys. Res. 100, 21,077-21,089 (1995).
    [CrossRef]
  4. W. Lucht and J. L. Roujean, "Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations," Remote Sens. Rev. 18, 343-379 (2000).
    [CrossRef]
  5. O. Pokrovsky and J. L. Roujean, "Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison," Remote Sens. Environ. 84, 100-119 (2002).
    [CrossRef]
  6. W. Lucht, "Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling," J. Geophys. Res. 103, 8763-8778 (1998).
    [CrossRef]
  7. G. Jiang, Z.-L. Li, and F. Nerry, "Land surface emissivity retrieval from combined mid-indrared and thermal infrared data of MSG-SEVIRI," Remote Sens. Environ. 105, 326-340 (2006).
    [CrossRef]
  8. F. Petitcolin, F. Nerry, and M. P. Stoll, "Directional emissivity from AVHRR: Application to a region of northern Africa and the Iberian peninsula 1. Mapping emissivity in channel 3," Int. J. Remote Sens. 23, 3443-3472 (2002).
    [CrossRef]
  9. Z.-L. Li, F. Petitcolin and R. H. Zhang, "A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data," Sci. China Ser. E: Technol. Sci. 14, Supp: 23-33 (2000).
    [CrossRef]
  10. B. Tang and Z.-L. Li, "Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23," Int. J. Remote Sens. 29, 4907-4925 (2008).
    [CrossRef]
  11. G. Jiang and Z.-L. Li, "Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data," Opt. Express 16, 19310-19321 (2008).
    [CrossRef]
  12. Z. Wan, "New refinements and validation of the MODIS land-surface temperature/emissivity products," Remote Sens. Environ. 112, 59-97 (2008).
    [CrossRef]
  13. S. M. Uppala, P. W. Kallberg, and A. J. Simmons et al., "The ERA-40 re-analysis," Q. J. R. Meteorol. Soc. 131, 2961-3012 (2005).
    [CrossRef]

2008 (3)

B. Tang and Z.-L. Li, "Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23," Int. J. Remote Sens. 29, 4907-4925 (2008).
[CrossRef]

Z. Wan, "New refinements and validation of the MODIS land-surface temperature/emissivity products," Remote Sens. Environ. 112, 59-97 (2008).
[CrossRef]

G. Jiang and Z.-L. Li, "Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data," Opt. Express 16, 19310-19321 (2008).
[CrossRef]

2006 (1)

G. Jiang, Z.-L. Li, and F. Nerry, "Land surface emissivity retrieval from combined mid-indrared and thermal infrared data of MSG-SEVIRI," Remote Sens. Environ. 105, 326-340 (2006).
[CrossRef]

2005 (1)

S. M. Uppala, P. W. Kallberg, and A. J. Simmons et al., "The ERA-40 re-analysis," Q. J. R. Meteorol. Soc. 131, 2961-3012 (2005).
[CrossRef]

2002 (2)

F. Petitcolin, F. Nerry, and M. P. Stoll, "Directional emissivity from AVHRR: Application to a region of northern Africa and the Iberian peninsula 1. Mapping emissivity in channel 3," Int. J. Remote Sens. 23, 3443-3472 (2002).
[CrossRef]

O. Pokrovsky and J. L. Roujean, "Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison," Remote Sens. Environ. 84, 100-119 (2002).
[CrossRef]

2000 (2)

Z.-L. Li, F. Petitcolin and R. H. Zhang, "A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data," Sci. China Ser. E: Technol. Sci. 14, Supp: 23-33 (2000).
[CrossRef]

W. Lucht and J. L. Roujean, "Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations," Remote Sens. Rev. 18, 343-379 (2000).
[CrossRef]

1998 (1)

W. Lucht, "Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling," J. Geophys. Res. 103, 8763-8778 (1998).
[CrossRef]

1995 (1)

W. Wanner, X. Li, and A. H. Strahler, "On the derivation of kernels for kernel-driven models of bidirectional reflectance," J. Geophys. Res. 100, 21,077-21,089 (1995).
[CrossRef]

1992 (1)

J. L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data," J. Geophys. Res. 97, 20,455-20,468 (1992).

1989 (1)

T. Nilson and A. Kuusk, "A reflectance model for the homogeneous plant canopy and its inversion," Remote Sens. Environ. 27, 157-167 (1989).
[CrossRef]

Deschamps, P. Y.

J. L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data," J. Geophys. Res. 97, 20,455-20,468 (1992).

Jiang, G.

G. Jiang and Z.-L. Li, "Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data," Opt. Express 16, 19310-19321 (2008).
[CrossRef]

G. Jiang, Z.-L. Li, and F. Nerry, "Land surface emissivity retrieval from combined mid-indrared and thermal infrared data of MSG-SEVIRI," Remote Sens. Environ. 105, 326-340 (2006).
[CrossRef]

Kallberg, P. W.

S. M. Uppala, P. W. Kallberg, and A. J. Simmons et al., "The ERA-40 re-analysis," Q. J. R. Meteorol. Soc. 131, 2961-3012 (2005).
[CrossRef]

Kuusk, A.

T. Nilson and A. Kuusk, "A reflectance model for the homogeneous plant canopy and its inversion," Remote Sens. Environ. 27, 157-167 (1989).
[CrossRef]

Leroy, M.

J. L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data," J. Geophys. Res. 97, 20,455-20,468 (1992).

Li, X.

W. Wanner, X. Li, and A. H. Strahler, "On the derivation of kernels for kernel-driven models of bidirectional reflectance," J. Geophys. Res. 100, 21,077-21,089 (1995).
[CrossRef]

Li, Z.-L.

G. Jiang and Z.-L. Li, "Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data," Opt. Express 16, 19310-19321 (2008).
[CrossRef]

B. Tang and Z.-L. Li, "Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23," Int. J. Remote Sens. 29, 4907-4925 (2008).
[CrossRef]

G. Jiang, Z.-L. Li, and F. Nerry, "Land surface emissivity retrieval from combined mid-indrared and thermal infrared data of MSG-SEVIRI," Remote Sens. Environ. 105, 326-340 (2006).
[CrossRef]

Z.-L. Li, F. Petitcolin and R. H. Zhang, "A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data," Sci. China Ser. E: Technol. Sci. 14, Supp: 23-33 (2000).
[CrossRef]

Lucht, W.

W. Lucht and J. L. Roujean, "Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations," Remote Sens. Rev. 18, 343-379 (2000).
[CrossRef]

W. Lucht, "Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling," J. Geophys. Res. 103, 8763-8778 (1998).
[CrossRef]

Nerry, F.

G. Jiang, Z.-L. Li, and F. Nerry, "Land surface emissivity retrieval from combined mid-indrared and thermal infrared data of MSG-SEVIRI," Remote Sens. Environ. 105, 326-340 (2006).
[CrossRef]

F. Petitcolin, F. Nerry, and M. P. Stoll, "Directional emissivity from AVHRR: Application to a region of northern Africa and the Iberian peninsula 1. Mapping emissivity in channel 3," Int. J. Remote Sens. 23, 3443-3472 (2002).
[CrossRef]

Nilson, T.

T. Nilson and A. Kuusk, "A reflectance model for the homogeneous plant canopy and its inversion," Remote Sens. Environ. 27, 157-167 (1989).
[CrossRef]

Petitcolin, F.

F. Petitcolin, F. Nerry, and M. P. Stoll, "Directional emissivity from AVHRR: Application to a region of northern Africa and the Iberian peninsula 1. Mapping emissivity in channel 3," Int. J. Remote Sens. 23, 3443-3472 (2002).
[CrossRef]

Z.-L. Li, F. Petitcolin and R. H. Zhang, "A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data," Sci. China Ser. E: Technol. Sci. 14, Supp: 23-33 (2000).
[CrossRef]

Pokrovsky, O.

O. Pokrovsky and J. L. Roujean, "Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison," Remote Sens. Environ. 84, 100-119 (2002).
[CrossRef]

Roujean, J. L.

O. Pokrovsky and J. L. Roujean, "Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison," Remote Sens. Environ. 84, 100-119 (2002).
[CrossRef]

W. Lucht and J. L. Roujean, "Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations," Remote Sens. Rev. 18, 343-379 (2000).
[CrossRef]

J. L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data," J. Geophys. Res. 97, 20,455-20,468 (1992).

Simmons, A. J.

S. M. Uppala, P. W. Kallberg, and A. J. Simmons et al., "The ERA-40 re-analysis," Q. J. R. Meteorol. Soc. 131, 2961-3012 (2005).
[CrossRef]

Stoll, M. P.

F. Petitcolin, F. Nerry, and M. P. Stoll, "Directional emissivity from AVHRR: Application to a region of northern Africa and the Iberian peninsula 1. Mapping emissivity in channel 3," Int. J. Remote Sens. 23, 3443-3472 (2002).
[CrossRef]

Strahler, A. H.

W. Wanner, X. Li, and A. H. Strahler, "On the derivation of kernels for kernel-driven models of bidirectional reflectance," J. Geophys. Res. 100, 21,077-21,089 (1995).
[CrossRef]

Tang, B.

B. Tang and Z.-L. Li, "Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23," Int. J. Remote Sens. 29, 4907-4925 (2008).
[CrossRef]

Uppala, S. M.

S. M. Uppala, P. W. Kallberg, and A. J. Simmons et al., "The ERA-40 re-analysis," Q. J. R. Meteorol. Soc. 131, 2961-3012 (2005).
[CrossRef]

Wan, Z.

Z. Wan, "New refinements and validation of the MODIS land-surface temperature/emissivity products," Remote Sens. Environ. 112, 59-97 (2008).
[CrossRef]

Wanner, W.

W. Wanner, X. Li, and A. H. Strahler, "On the derivation of kernels for kernel-driven models of bidirectional reflectance," J. Geophys. Res. 100, 21,077-21,089 (1995).
[CrossRef]

Zhang, R. H.

Z.-L. Li, F. Petitcolin and R. H. Zhang, "A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data," Sci. China Ser. E: Technol. Sci. 14, Supp: 23-33 (2000).
[CrossRef]

Int. J. Remote Sens. (2)

F. Petitcolin, F. Nerry, and M. P. Stoll, "Directional emissivity from AVHRR: Application to a region of northern Africa and the Iberian peninsula 1. Mapping emissivity in channel 3," Int. J. Remote Sens. 23, 3443-3472 (2002).
[CrossRef]

B. Tang and Z.-L. Li, "Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23," Int. J. Remote Sens. 29, 4907-4925 (2008).
[CrossRef]

J. Geophys. Res. (3)

W. Lucht, "Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling," J. Geophys. Res. 103, 8763-8778 (1998).
[CrossRef]

J. L. Roujean, M. Leroy, and P. Y. Deschamps, "A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data," J. Geophys. Res. 97, 20,455-20,468 (1992).

W. Wanner, X. Li, and A. H. Strahler, "On the derivation of kernels for kernel-driven models of bidirectional reflectance," J. Geophys. Res. 100, 21,077-21,089 (1995).
[CrossRef]

Opt. Express (1)

Q. J. R. Meteorol. Soc. (1)

S. M. Uppala, P. W. Kallberg, and A. J. Simmons et al., "The ERA-40 re-analysis," Q. J. R. Meteorol. Soc. 131, 2961-3012 (2005).
[CrossRef]

Remote Sens. Environ. (4)

Z. Wan, "New refinements and validation of the MODIS land-surface temperature/emissivity products," Remote Sens. Environ. 112, 59-97 (2008).
[CrossRef]

T. Nilson and A. Kuusk, "A reflectance model for the homogeneous plant canopy and its inversion," Remote Sens. Environ. 27, 157-167 (1989).
[CrossRef]

O. Pokrovsky and J. L. Roujean, "Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison," Remote Sens. Environ. 84, 100-119 (2002).
[CrossRef]

G. Jiang, Z.-L. Li, and F. Nerry, "Land surface emissivity retrieval from combined mid-indrared and thermal infrared data of MSG-SEVIRI," Remote Sens. Environ. 105, 326-340 (2006).
[CrossRef]

Remote Sens. Rev. (1)

W. Lucht and J. L. Roujean, "Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations," Remote Sens. Rev. 18, 343-379 (2000).
[CrossRef]

Sci. China Ser. E: Technol. Sci. (1)

Z.-L. Li, F. Petitcolin and R. H. Zhang, "A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data," Sci. China Ser. E: Technol. Sci. 14, Supp: 23-33 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Land use map of the study area generated from MODIS land cover type 2004 L3 global 1 km product (MOD12Q1) and classified by IGBP classification scheme.

Fig. 2.
Fig. 2.

Map of the directional emissivity in MIR channel for July 24, 2005.

Fig. 3.
Fig. 3.

Histogram of the directional emissivity in MIR channel estimated from MODIS data for the major land cover types in the study area. Std=standard deviation.

Fig. 4.
Fig. 4.

Sun and satellite zenith and azimuth angles in polar representation at four locations for ten clear days during the period of July 12 to July 30 of 2005.

Fig. 5.
Fig. 5.

Comparison of the bidirectional reflectances estimated using Eq. (1) with those modeled using Eq. (5): (a) for locations A, B, C and D, (b) for the entire area.

Fig. 6.
Fig. 6.

Comparison of the directional emissivities estimated from MODIS MIR channels using Eqs. (1), (5) and (10) with those from MYD11B1 product for ten clear days during July 12 to 30, 2005: (a) for four locations (b) for entire regions.

Tables (2)

Tables Icon

Table 1. Date and acquisition time for ten days MODIS data used in this study

Tables Icon

Table 2. Fitting parameters k iso, k vol, and k geo in Eq. (5) for locations A, B, C, and D

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ b = B ( T g _ 22 ) B ( T g 0 ) R 22 s
T g 0 = T g _ 22 + a 1 + a 2 ( T g _ 22 T g _ 23 ) + a 3 ( T g _ 22 T g _ 23 ) 2
ε ( θ ) = 1 ρ h ( θ )
ρ h ( θ ) = 0 2 π 0 π / 2 ρ b ( θ , θ i , φ ) sin ( θ i ) cos ( θ i ) d θ i
ρ b ( θ , θ i , φ ) = k iso + k vol f vol ( θ , θ i , φ ) + k geo f geo ( θ , θ i , φ )
f vol ( θ , θ i , φ ) = 4 3 π 1 cos θ + cos θ i [ ( π 2 ξ ) cos ξ + sin ξ ] 1 3
cos ξ = cos θ cos θ i + sin θ sin θ i cos φ
f geo = G ( θ , θ i , φ ) sec θ ' sec θ ' i + 1 2 ( 1 + cos ξ ' ) sec θ sec θ ' i
G ( θ , θ s , φ ) = 1 π ( t sin t cos t ) ( sec θ ' + sec θ ' i )
ε ( θ ) = 1 π k iso k vol I f vol ( θ ) k geo I f geo ( θ )
I f vol ( θ ) = 0.0299 + 0.0128 exp ( θ / 21.4382 )
I f geo ( θ ) = 2.0112 0.3410 exp [ 2 ( θ 90.9545 68.8171 ) 2 ]

Metrics