Abstract

Repetition rate fluctuation is one of the main drawbacks of the low-threshold stimulated Brillouin scattering (SBS) Q-switched fiber laser. A method to stabilize the repetition rate is proposed in this paper by injecting a square-wave modulated light. It is measured experimentally that variance of the repetition rate can be improved from ~20% to ~1% of the period. It is also found that effectiveness of the method depends on modulation frequency and duty cycle of the injection. Its working mechanism is analyzed qualitatively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
    [Crossref]
  2. J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).
  3. P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
    [Crossref]
  4. S. V. Chernikov, Y. Zhu, and J. R. Taylor, “Supercontinuum self-Q-s witched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [Crossref] [PubMed]
  5. A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
    [Crossref]
  6. M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
    [Crossref]
  7. F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
    [Crossref]
  8. Y. X. Fan, F. Y. Lu, S. L. Hu, K. C. Lu, H. J. Wang, and G. Y. Zhang, “Narrow-linewidth widely tunable hybrid Q-switched double-clad fiber laser,” Opt. Lett. 28, 537–539 (2003).
    [Crossref] [PubMed]
  9. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
    [Crossref]
  10. N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
    [Crossref]
  11. A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh—stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
    [Crossref] [PubMed]

2007 (1)

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

2006 (1)

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

2004 (1)

2003 (1)

2001 (2)

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[Crossref]

1999 (2)

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

1998 (2)

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).

Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
[Crossref]

1997 (1)

Aït-Ameur, K.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

Blondel, M.

Bretenaker, F.

N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[Crossref]

Brunel, M.

N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[Crossref]

Chen, Y. C.

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

Chen, Z. J.

Chernikov, S.

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

Chernikov, S. V.

Deparis, O.

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

Dhanjal, S.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

Fan, Y. X.

Floch, A. L.

N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[Crossref]

Fotiadi, A. A.

A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh—stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
[Crossref] [PubMed]

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

Gilles, H.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

Girard, S.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

Grudinin, A. B.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23, 454–456 (1998).
[Crossref]

Hu, S. L.

Ikiades, A.

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

Kiyan, R.

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

Kong, F.

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

Lai, N. D.

N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[Crossref]

Laroche, M.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

Lee, K. K.

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

Liu, L.

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

Lu, F. Y.

Lu, K. C.

Mégret, P.

Minelly, J. D.

Nilsson, J.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

Offerhaus, H. L.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

Passilly, N.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

Petropoulos, P.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

Porta, J.

Renaud, C. C.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

Richardson, D. J.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

Sanders, C.

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

Selvas-Aguilar, R. J.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

Taylor, J. R.

Turner, P. W.

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

Wang, H. J.

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).

Zhang, G. Y.

Zheludev, N. I.

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

Zhu, Y.

Appl. Phys. Lett. (3)

P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).
[Crossref]

F. Kong, L. Liu, C. Sanders, Y. C. Chen, and K. K. Lee, “Phase locking of nanosecond pulses in a passively Q-switched two-element fiber laser array,” Appl. Phys. Lett. 90, 151110 (2007).
[Crossref]

N. D. Lai, M. Brunel, F. Bretenaker, and A. L. Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photonics Technol. Lett. 11, 976–978 (1999).
[Crossref]

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, “Nanosecond Pulse Generation in a Passively Q-Switched Yb-Doped Fiber Laser by Cr4+ : YAG Saturable Absorber,” IEEE Photonics Technol. Lett. 18, 764–766 (2006).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (1)

A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001).
[Crossref]

Rev. Laser Eng. (1)

J. J. Zayhowski, “Passively Q-switched microchip lasers and applications,” Rev. Laser Eng. 26, 841–846 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic diagram of experimental set-up

Fig. 2.
Fig. 2.

Numerically calculated results: (a) Cascaded SBS generation process in corresponding point A and C in Fig .(1); Population inversion dynamics in EDF without(b) and with(c) external injection; (d) Pulse period jittering with and without external injection. Model parameters: FBG’s reflectivity is 99.5% at central frequency with the bandwidth of 30GHz,

Fig. 3.
Fig. 3.

(a) Typical output of a solitary SBS Q-switched laser; (b) Profile of the generated pulse; (c) Output of the SBS Q-switched laser with external injection; (d) Spectrum of output light and FBG

Fig. 4.
Fig. 4.

(a) Two pulses in one modulation period; (b) Stabilization zone as function of modulation frequency and duty cycle

Fig. 5.
Fig. 5.

Output of the externally injected SBS Q-switched laser with duty cycle of (a) 70% and (b) 80% and their respective spectrum in (c) and (d) when the injection wavelength is 1554.95nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n c E k ± t ± E k ± z = g SBS 2 S ( ρ k 1 * E k 1 ± ρ k ± E k + 1 ± ) + 1 2 ( σ e N 2 σ a N 1 ) E k ± + η k ± E k
T 2 ρ k ± t + ρ k ± = E k ± E k + 1 * + f k ± ( z , t ) ,
n c P p t + P p z = σ p N 1 P p ,
N 2 t = σ p Sh υ p N 1 P p ( σ e Sh υ k N 2 σ a Sh υ k N 1 ) [ k ( E k + E k + * + E k E k * ) + E inject E inject * ] N 2 τ ,
n c P inject t + P inject t = ( σ e N 2 σ a N 1 ) P inject

Metrics