Abstract

This study proposed and experimentally demonstrated a cost-efficient scheme that can deliver 60 GHz millimeter-wave (mm-wave) multi-gigabit wireless services over 125 km long-reach passive optical networks (PONs) without any dispersion compensation. By introducing a remote local exchange (LE) stage with robust signal regeneration and all-optical upconversion functionalities, the proposed long-reach optical-wireless access network can easily accommodate over 128 users with 2.5 Gb/s shared bandwidth as well as shifting the capital expenditure of multiple hybrid optical network units (ONUs) toward single LE headend. Experimental verification shows that the power penalties for wireless and wired services are 1.8 dB and 0.4 dB at 10-9 BER after 125 km optical fiber transmission.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key Enabling Technologies for Optical-Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture,” J. Lightwave Technol. 25, 3452–3471 (2007).
    [Crossref]
  2. J. Vegas Olmos, T. Kuri, and K. Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett. 20, 617–619 (2008).
    [Crossref]
  3. T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” Proc. IEEE,  94, 911–934 (2006).
    [Crossref]
  4. S. M. Lee, S. G. Mun, M. H. Kim, and C. H. Lee, “Demonstration of a Long-Reach DWDM-PON for Consolidation of Metro and Access Networks,” J. Lightwave Technol. 25, 271–276 (2007).
    [Crossref]
  5. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24, 2827–2834 (2006).
    [Crossref]
  6. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, “Millimeter-Wave Broad-Band Fiber-Wireless System Incorporating Baseband Data Transmission over Fiber and Remote LO Delivery,” J. Lightwave Technol. 18, 1355–1363 (2000).
    [Crossref]
  7. T. Ismail, C. P. Liu, and A. J. Seeds, “Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery,” Proc. OFC/NFOEC 2007, OWN3 (2007).
  8. S. A. Malyshev and A. L. Chizh, “p-i-n Photodiodes for Frequency Mixing in Radio-Over-Fiber Systems,” J. Lightwave Technol. 25, 3236–3243 (2007).
    [Crossref]
  9. G. Shen, R. S. Tucker, and C. J. Chae, “Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX,” IEEE Commun. Mag. 45, 44–50 (2007).
    [Crossref]
  10. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links,” IEEE Trans. Microwave Theory Technol. 44, 1716–1724 (1996).
    [Crossref]

2008 (1)

J. Vegas Olmos, T. Kuri, and K. Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett. 20, 617–619 (2008).
[Crossref]

2007 (4)

2006 (2)

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24, 2827–2834 (2006).
[Crossref]

T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” Proc. IEEE,  94, 911–934 (2006).
[Crossref]

2000 (1)

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links,” IEEE Trans. Microwave Theory Technol. 44, 1716–1724 (1996).
[Crossref]

Chae, C. J.

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX,” IEEE Commun. Mag. 45, 44–50 (2007).
[Crossref]

Chang, G. K.

Chizh, A. L.

Ellinas, G.

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links,” IEEE Trans. Microwave Theory Technol. 44, 1716–1724 (1996).
[Crossref]

Ismail, T.

T. Ismail, C. P. Liu, and A. J. Seeds, “Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery,” Proc. OFC/NFOEC 2007, OWN3 (2007).

Jia, Z.

Kim, M. H.

Kitayama, K.

J. Vegas Olmos, T. Kuri, and K. Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett. 20, 617–619 (2008).
[Crossref]

Koonen, T.

T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” Proc. IEEE,  94, 911–934 (2006).
[Crossref]

Kuri, T.

J. Vegas Olmos, T. Kuri, and K. Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett. 20, 617–619 (2008).
[Crossref]

Lee, C. H.

Lee, S. M.

Lim, C.

Liu, C. P.

T. Ismail, C. P. Liu, and A. J. Seeds, “Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery,” Proc. OFC/NFOEC 2007, OWN3 (2007).

Malyshev, S. A.

Mun, S. G.

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links,” IEEE Trans. Microwave Theory Technol. 44, 1716–1724 (1996).
[Crossref]

Nirmalathas, A.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links,” IEEE Trans. Microwave Theory Technol. 44, 1716–1724 (1996).
[Crossref]

Novak, D.

Seeds, A. J.

T. Ismail, C. P. Liu, and A. J. Seeds, “Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery,” Proc. OFC/NFOEC 2007, OWN3 (2007).

Shen, G.

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX,” IEEE Commun. Mag. 45, 44–50 (2007).
[Crossref]

Talli, G.

Townsend, P. D.

Tucker, R. S.

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX,” IEEE Commun. Mag. 45, 44–50 (2007).
[Crossref]

Vegas Olmos, J.

J. Vegas Olmos, T. Kuri, and K. Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett. 20, 617–619 (2008).
[Crossref]

Waterhouse, R.

Yoffe, G.

Yu, J.

IEEE Commun. Mag. (1)

G. Shen, R. S. Tucker, and C. J. Chae, “Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX,” IEEE Commun. Mag. 45, 44–50 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Vegas Olmos, T. Kuri, and K. Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett. 20, 617–619 (2008).
[Crossref]

IEEE Trans. Microwave Theory Technol. (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links,” IEEE Trans. Microwave Theory Technol. 44, 1716–1724 (1996).
[Crossref]

J. Lightwave Technol. (5)

Proc. IEEE (1)

T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” Proc. IEEE,  94, 911–934 (2006).
[Crossref]

Other (1)

T. Ismail, C. P. Liu, and A. J. Seeds, “Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery,” Proc. OFC/NFOEC 2007, OWN3 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Network architecture of the proposed long-reach and conventional short-reach 60 GHz mm-wave hybrid optical-wireless access networks.

Fig. 2.
Fig. 2.

Proof-of-concept experimental setup for the proposed long-reach 60 GHz mm-wave hybrid optical-wireless access network with remote upconverter.

Fig. 3.
Fig. 3.

Optical spectra of (a) the lightwave with 30 GHz DSB modulation before and after an OL and (b) two independent downstream channels carrying 2.5 Gb/s baseband signal and 60 GHz optical mm-wave, respectively.

Fig. 4.
Fig. 4.

Waveforms of 60 GHz optical mm-wave before and after 125 km transmission, and eye diagrams of 2.5 Gb/s signals carried by 60 GHz optical mm-wave measured at different transmission distances by using conventional and proposed approaches, respectively.

Fig. 5.
Fig. 5.

Measured eye disgram of an upconverted 10 Gb/s baseband signal on 60 GHz band at an LE which is 50 km away from the CO.

Fig. 6.
Fig. 6.

BER performance and corresponding eye diagrams for (a) wireless and (b) wired services, respectively.

Metrics