Abstract

In the recent years, there has been an increase in applications of non-contact diffusion optical tomography. Especially when the objective is the recovery of fluorescence targets. The non-contact acquisition systems with the use of a CCD-camera produce much denser sampled boundary data sets than fibre-based systems. When model-based reconstruction methods are used, that rely on the inversion of a derivative operator, the large number of measurements poses a challenge since the explicit formulation and storage of the Jacobian matrix could be in general not feasible. This problem is aggravated further in applications, where measurements at multiple wavelengths are used. We present a matrix-free model-based reconstruction method, that addresses the problems of large data sets and reduces the computational cost and memory requirements for the reconstruction. The idea behind the matrix-free method is that information about the Jacobian matrix could be available through matrix times vector products so that the creation and storage of big matrices can be avoided. We tested the method for multiple wavelength fluorescence tomography with simulated and experimental data from phantom experiments, and we found substantial benefits in computational times and memory requirements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
    [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  3. P. St. J. Russel, "Photonic crystal fibers," Science 299, 358-362 (2000).
    [CrossRef] [PubMed]
  4. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
    [CrossRef]
  5. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-780 (2001).
    [CrossRef] [PubMed]
  6. G. Vienne, Y. Xu, C. Jakobsen, H.-J¨oeyer, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500i-3508 (2004).
    [CrossRef] [PubMed]
  7. P. Yeh, A. Yariv, and E. Marom, "Theory of bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978).
    [CrossRef] [PubMed]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
    [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
    [CrossRef]
  10. D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  11. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007).
    [CrossRef]
  12. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallaher, and K. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
    [CrossRef]
  13. M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).
  14. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
    [CrossRef] [PubMed]
  15. A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
    [CrossRef] [PubMed]
  16. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
    [CrossRef] [PubMed]
  17. C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
    [CrossRef] [PubMed]
  18. P. Tzankov, O. Steinkeller, J. Zheng, M. Mero,W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, "High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser," Opt. Express 15, 6389-6395 (2007).
  19. A. Husakou and J. Herrmann, "Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides," Opt. Express 16, 3834-3843 (2008).
  20. R. Scip¨ocs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).
  21. D. Mori and T. Baba, "Dispersion-controlled optical group-delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
  22. Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).
  23. L. Davis, Handbook of genetic algorithms (Van Nostrand Reinhold, New York, 1991).
  24. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
  25. A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
  26. A. Husakou and J. Herrmann, "Hundred milliards times brighter than the Sun: ultrahigh-power supercontinuum generation from dielectric-coated metallic hollow waveguides," Phys. Rev. Lett.submitted.

2008

A. Husakou and J. Herrmann, "Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides," Opt. Express 16, 3834-3843 (2008).

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

2007

P. Tzankov, O. Steinkeller, J. Zheng, M. Mero,W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, "High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser," Opt. Express 15, 6389-6395 (2007).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

2005

2004

G. Vienne, Y. Xu, C. Jakobsen, H.-J¨oeyer, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500i-3508 (2004).
[CrossRef] [PubMed]

D. Mori and T. Baba, "Dispersion-controlled optical group-delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).

2003

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

2001

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-780 (2001).
[CrossRef] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).

2000

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

P. St. J. Russel, "Photonic crystal fibers," Science 299, 358-362 (2000).
[CrossRef] [PubMed]

1999

C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1998

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

1996

M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).

1994

1978

1964

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
[CrossRef] [PubMed]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef]

Apolonski, A.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Baba, T.

D. Mori and T. Baba, "Dispersion-controlled optical group-delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).

Babushkin, I.

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
[CrossRef] [PubMed]

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

Bauckus, S.

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Beloglasov, V. I.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Bethge, J.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Bock, M.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Cavalieri, A. L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Chang, Z.

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

Cook, K.

Corkum, P. B.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

de Silvestri, S.

M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).

Drescher, M.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Durfee, C. G.

C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
[CrossRef] [PubMed]

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Engeness, T. D.

Ferencz, K.

Fiess, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-780 (2001).
[CrossRef] [PubMed]

Fischer, D.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Freyer, W.

Gaeta, A.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Gallaher, M.

George, A. K.

Gerome, F.

Goulielmakis, E.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Helml, W.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Hensley, C.

Hentschel, M.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Herne, C.

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Herrmann, J.

A. Husakou and J. Herrmann, "Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides," Opt. Express 16, 3834-3843 (2008).

P. Tzankov, O. Steinkeller, J. Zheng, M. Mero,W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, "High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser," Opt. Express 15, 6389-6395 (2007).

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).

A. Husakou and J. Herrmann, "Hundred milliards times brighter than the Sun: ultrahigh-power supercontinuum generation from dielectric-coated metallic hollow waveguides," Phys. Rev. Lett.submitted.

Horvath, B.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Husakou, A.

A. Husakou and J. Herrmann, "Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides," Opt. Express 16, 3834-3843 (2008).

P. Tzankov, O. Steinkeller, J. Zheng, M. Mero,W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, "High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser," Opt. Express 15, 6389-6395 (2007).

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).

A. Husakou and J. Herrmann, "Hundred milliards times brighter than the Sun: ultrahigh-power supercontinuum generation from dielectric-coated metallic hollow waveguides," Phys. Rev. Lett.submitted.

Ibanescu, M.

Iliew, R.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Jacobs, S. A.

Jakobsen, C.

G. Vienne, Y. Xu, C. Jakobsen, H.-J¨oeyer, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500i-3508 (2004).
[CrossRef] [PubMed]

Joannopoulous, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-780 (2001).
[CrossRef] [PubMed]

Johnson, S. G.

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
[CrossRef] [PubMed]

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Kienberger, R.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Knight, J. C.

F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Koch, K.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Krausz, F.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

R. Scip¨ocs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
[CrossRef] [PubMed]

Marom, E.

Mero, M.

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

Mori, D.

D. Mori and T. Baba, "Dispersion-controlled optical group-delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).

Mueller, D.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999).
[CrossRef] [PubMed]

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Nisoli, M.

M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).

Noack, F.

Ouzounov, D.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Pervak, V.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Reider, G. A.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Rundquist, A.

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

Russel, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef]

P. St. J. Russel, "Photonic crystal fibers," Science 299, 358-362 (2000).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
[CrossRef] [PubMed]

Schultue, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Scip¨ocs, R.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Skibina, J. S.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Skorobogatiy, M.

Soljacic, M.

Speilmann, Ch.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Spielmann, C.

Steinkeller, O.

Steinmeyer, G.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Svelto, O.

M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

Tempea, G.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Tzankov, P.

Uiberacker, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

Veisz, L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Venkateraman, N.

Vienne, G.

G. Vienne, Y. Xu, C. Jakobsen, H.-J¨oeyer, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500i-3508 (2004).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wedell, R.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

Weisberg, O.

Xu, Y.

G. Vienne, Y. Xu, C. Jakobsen, H.-J¨oeyer, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500i-3508 (2004).
[CrossRef] [PubMed]

Yakovlev, V. S.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

Zheng, J.

Appl. Phys. Lett.

M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).

D. Mori and T. Baba, "Dispersion-controlled optical group-delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Nature

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002).
[CrossRef]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).

Nature Photon.

Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).

New J. Phys.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).

A. Husakou and J. Herrmann, "Hundred milliards times brighter than the Sun: ultrahigh-power supercontinuum generation from dielectric-coated metallic hollow waveguides," Phys. Rev. Lett.submitted.

Science

A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998).
[CrossRef] [PubMed]

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

P. St. J. Russel, "Photonic crystal fibers," Science 299, 358-362 (2000).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef]

D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Other

L. Davis, Handbook of genetic algorithms (Van Nostrand Reinhold, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) A representation of the experimental setup. The dots in the back of the figure denote source positions and the rectangle in the front the image acquired by the CCD camera. The rod on the left contains the Rhodamine 101 while the one on the right the Rhodamine 6G with spectral responses given in the graph on the right. (b) Estimated quantum yield spectra for Rhodamine 101 and Rhodamine 6G.

Fig. 2.
Fig. 2.

Simulated data reconstruction (using 473 detectors per source) Horizontal and Vertical slice along the middle of the slab for the recovered concentrations using simulated data with added 3% noise at the 580nm and 620nm wavelengths for Rhodamine 101 (a) and Rhodamine 6G (b). The computational time for the traditional method of explicit Jacobian was 15minutes 58sec while for the reconstruction using the matrix-free method was 2minutes 44sec.

Fig. 3.
Fig. 3.

Experimental data reconstruction using 473 detectors per source Horizontal and vertical slice along the middle of the slab for the recovered concentrations using for phantom experimental measurements at the 580nm and 620nm wavelengths for Rhodamine 101 (a) and Rhodamine 6G (b). This reconstruction using the matrix-free method took 4min. 46sec while the computational time for the traditional method with the explicit Jacobian was 17minutes 4sec.

Fig. 4.
Fig. 4.

Experimental data reconstruction using 1665 detectors per source Horizontal and Vertical slice along the middle of the slab for the recovered concentrations using experimental measurements at the 580nm and 620nm wavelengths for Rhodamine 101 (a) and Rhodamine 6G (b). This reconstruction using the matrix-free method took 4min 57sec while the computational time for the traditional method with the explicit Jacobian was 52min 22sec

Tables (2)

Tables Icon

Table 1. Bulk optical properties at the excitation wavelength and emission wavelengths.

Tables Icon

Table 2. Reconstruction times for explicit Jacobian method and the matrix-free using two (580nm and 620nm) wavelengths and two different measurement setups, 475 measurements per source and 1665 positions per source. For the memory allocation calculations, a mesh of 6480 nodes were assumed.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

h r λ = i η i ( λ ) c i ( r ) , r Ω
( D r λ e + μ a r λ e ) U ( e ) ( r ) = q ( r )
( D r λ f + μ a r λ f ) U ( f ) ( r ) = U ( e ) ( r ) h r λ f ,
U ( ξ ) + 2 ζ D ξ λ U ( e f ) ( ξ ) n = 0 , ξ Ω
y ( ξ ) = D ξ λ U ( ξ ) n = 1 2 ζ U ( ξ ) ξ Ω
g d ( e f ) = 𝓜 [ y ( e f ) ] Ω y ( e f ) ( ξ ) w d ( ξ ) d ξ
g ( f ) = F ( h )
D ( r ) k = 1 P D k b k ( r ) , μ a ( r ) k = 1 P μ k b k ( r ) , h ( r ) k = 1 P h k b k ( r )
U ( r ) = 1 N U v k ( r )
K D μ U = Q
K λ e U ( e ) = Q ,
K λ f U ( f ) = h U ( e ) ,
g Q ( f ) = F Q ( h ) = A Q ( h ) h 𝓜 [ K λ f 1 h K λ e 1 Q ]
J ( sd ) , k ( h ) = U s , k ( e ) U d , k ( f ) +
K λ e U s ( e ) = Q s ,
K λ f U d ( f ) + = Q d + ,
x ̂ = arg min x [ Φ ( x ) 1 2 g meas ( f ) F ( x ) 2 + α Ψ ( x ) ]
( A T A + α Ψ ( x ( k ) ) ) x δ = A T ( g meas ( f ) A x ( k ) ) α Ψ ( x ( k ) )
τ k = arg min τ Φ ( x ( k ) + τ x δ )
x ( k + 1 ) = x ( k ) + τ k x δ
( A T A + α L T L ) x ̂ = A T g meas ( f )
h ̂ ( λ ) = arg min h ( λ ) 1 2 g meas ( f ) ( λ ) A ( λ ) h 2 + α Ψ ( h ( λ ) )
[ η ] c k = h ( λ ) [ η 1 ( λ 1 ) η 2 ( λ 1 ) η n ( λ 1 ) η 1 ( λ 2 ) η 2 ( λ 2 ) η n ( λ 2 ) η 1 ( λ n ) η 2 ( λ n ) η n ( λ n ) ] [ c 1 , k c 2 , k c n , k ] = [ h k ( λ 1 ) h k ( λ 2 ) h k ( λ n ) ]
g ( f ) = g ( f 1 ) g ( f 2 ) g ( f m )
A c l λ = { F ij c λ c l , k c l , k h k ( λ ) } = A ( h ) η l ( λ )
A ( c ) = diag [ A ( h ( λ 1 ) ) , A ( h ( λ 2 ) ) , A ( h ( λ m ) ) ] [ η ]
= [ A ( h ( λ 1 ) ) η 1 ( λ 1 ) A ( h ( λ 1 ) ) η 2 ( λ 1 ) A ( h ( λ 1 ) ) η n ( λ 1 ) A ( h ( λ 2 ) ) η 1 ( λ 2 ) A ( h ( λ 2 ) ) η 2 ( λ 2 ) A ( h ( λ 2 ) ) η n ( λ 2 ) A ( h ( λ m ) ) η 1 ( λ m ) A ( h ( λ m ) ) η 2 ( λ m ) A ( h ( λ m ) ) η n ( λ m ) ]
x ̂ = arg min x 1 2 g ˜ ( f ) F ˜ ( x ) 2 + α Ψ ( x )
g meas ( f ) g ˜ ( f ) = g meas ( f ) , F ( x ) F ˜ ( x ) = g meas ( e ) g proj ( e ) F ( x )
g meas ( f ) g ˜ ( f ) = g meas ( f ) g ¯ ( f ) , F ( x ) F ˜ ( x ) = g meas ( e ) g proj ( e ) g ¯ ( f ) F ( x )
{ z , H z , H j z }

Metrics