Abstract

We show that a genetic algorithm can be used to optimize the layer thicknesses of a hollow waveguide with a multilayer dielectric cladding. It is shown that in such “chirped” hollow waveguide low loss over a wavelength range with more than one octave width can be achieved. We show that dispersion control is possible in such waveguides.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, "Key Enabling Technologies for Optical-Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture," J. Lightwave Technol. 25, 3452-3471 (2007).
  2. J. Vegas Olmos, T. Kuri, and K. Kitayama, "60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network," IEEE Photon. Technol. Lett. 20, 617-619 (2008).
    [CrossRef] [PubMed]
  3. T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?" Proc. IEEE,  94, 911-934 (2006).
    [CrossRef]
  4. S. M. Lee, S. G. Mun, M. H. Kim, and C. H. Lee, "Demonstration of a Long-Reach DWDM-PON for Consolidation of Metro and Access Networks," J. Lightwave Technol. 25, 271-276 (2007).
    [CrossRef] [PubMed]
  5. G. Talli and P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightwave Technol. 24, 2827-2834 (2006).
    [CrossRef] [PubMed]
  6. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yoffe, "Millimeter-Wave Broad-Band Fiber-Wireless System Incorporating Baseband Data Transmission over Fiber and Remote LO Delivery," J. Lightwave Technol. 18, 1355-1363 (2000).
    [CrossRef]
  7. T. Ismail, C. P. Liu and A. J. Seeds, "Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery," Proc. OFC/NFOEC 2007, OWN3 (2007).
    [CrossRef]
  8. S. A. Malyshev and A. L. Chizh, "p-i-n Photodiodes for Frequency Mixing in Radio-Over-Fiber Systems," J. Lightwave Technol. 25, 3236-3243 (2007).
    [CrossRef] [PubMed]
  9. G. Shen, R. S. Tucker, and C. J. Chae, "Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX," IEEE Commun. Mag. 45, 44-50 (2007).
    [CrossRef] [PubMed]
  10. U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microwave Theory Technol. 44, 1716-1724 (1996).
    [CrossRef] [PubMed]

2008 (1)

J. Vegas Olmos, T. Kuri, and K. Kitayama, "60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network," IEEE Photon. Technol. Lett. 20, 617-619 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (2)

2000 (1)

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microwave Theory Technol. 44, 1716-1724 (1996).
[CrossRef] [PubMed]

Chae, C. J.

G. Shen, R. S. Tucker, and C. J. Chae, "Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX," IEEE Commun. Mag. 45, 44-50 (2007).
[CrossRef] [PubMed]

Chang, G. K.

Chizh, A. L.

Ellinas, G.

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microwave Theory Technol. 44, 1716-1724 (1996).
[CrossRef] [PubMed]

Jia, Z.

Kim, M. H.

Kitayama, K.

J. Vegas Olmos, T. Kuri, and K. Kitayama, "60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network," IEEE Photon. Technol. Lett. 20, 617-619 (2008).
[CrossRef] [PubMed]

Koonen, T.

T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?" Proc. IEEE,  94, 911-934 (2006).
[CrossRef]

Kuri, T.

J. Vegas Olmos, T. Kuri, and K. Kitayama, "60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network," IEEE Photon. Technol. Lett. 20, 617-619 (2008).
[CrossRef] [PubMed]

Lee, C. H.

Lee, S. M.

Lim, C.

Malyshev, S. A.

Mun, S. G.

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microwave Theory Technol. 44, 1716-1724 (1996).
[CrossRef] [PubMed]

Nirmalathas, A.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microwave Theory Technol. 44, 1716-1724 (1996).
[CrossRef] [PubMed]

Novak, D.

Shen, G.

G. Shen, R. S. Tucker, and C. J. Chae, "Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX," IEEE Commun. Mag. 45, 44-50 (2007).
[CrossRef] [PubMed]

Talli, G.

Townsend, P. D.

Tucker, R. S.

G. Shen, R. S. Tucker, and C. J. Chae, "Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX," IEEE Commun. Mag. 45, 44-50 (2007).
[CrossRef] [PubMed]

Vegas Olmos, J.

J. Vegas Olmos, T. Kuri, and K. Kitayama, "60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network," IEEE Photon. Technol. Lett. 20, 617-619 (2008).
[CrossRef] [PubMed]

Waterhouse, R.

Yoffe, G.

Yu, J.

IEEE Commun. Mag. (1)

G. Shen, R. S. Tucker, and C. J. Chae, "Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX," IEEE Commun. Mag. 45, 44-50 (2007).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

J. Vegas Olmos, T. Kuri, and K. Kitayama, "60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network," IEEE Photon. Technol. Lett. 20, 617-619 (2008).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Technol. (1)

U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microwave Theory Technol. 44, 1716-1724 (1996).
[CrossRef] [PubMed]

J. Lightwave Technol. (5)

Proc. IEEE (1)

T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?" Proc. IEEE,  94, 911-934 (2006).
[CrossRef]

Other (1)

T. Ismail, C. P. Liu and A. J. Seeds, "Millimetre-wave Gigabit/s Wireless-over-Fibre Transmission Using Low Cost Uncooled Devices with Remote Local Oscillator Delivery," Proc. OFC/NFOEC 2007, OWN3 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scheme of a chirped multilayer hollow waveguide.

Fig. 2.
Fig. 2.

Evolution of the fitness function (red curve) α̃ with the generation number (a) and the optimum layer thicknesses (b). The fitness function of the intuitive design with constant layer thicknesses and a bandgap in the middle of the target domain is indicated by the green horizontal line. For a design with a low-index layer thickness linearly varying with radius (d 1i = 0.135+0.018i), the same is shown by the blue line. The inner waveguide diameter D is 40 μm.

Fig. 3.
Fig. 3.

Loss of an optimized waveguide with D = 40 μm (red cruve) with layer thicknesses indicated in Fig. 2. The loss of the waveguide with constant layer thicknesses is indicated by the blue curve, and the green curve designates the loss of a hollow waveguide with homogeneous dielectric cladding with a refractive index of 1.6. The black bracket indicates the target domain. In (b), the GVD of the optimized waveguide is shown by the red solid curve and the smoothed GVD is shown by the green long-dashed curve.

Fig. 4.
Fig. 4.

Loss of the TE01 (long-dashed green curve), TM01 (short-dashed blue curve), and HE21 (red solid curve) modes in the optimized waveguide.

Fig. 5.
Fig. 5.

Loss (a) and GVD (b) of an optimized waveguide (red curve) with larger diameter D = 80 μm. The layer thicknesses are close to that shown in Fig. 1. In (b), GVD (red solid curve) and smoothed GVD (green long-dashed curve) are shown.

Fig. 6.
Fig. 6.

Loss of an optimized waveguide (red curve) with D = 40 μm and a fitness function given by Eq. (2). The green curve designates the loss of the hollow waveguide with homogeneous dielectric cladding with a refractive index of 1.6. The black bracket indicates the target domain.

Fig. 7.
Fig. 7.

Spectrum (a) and temporal shape (b) of a 100-fs, 50-TW/cm2 pulse after the propagation of 1 m in an optimized fiber with D = 40 μm with geometry given in Fig. 2 filled with argon at 1 atm. The input wavelength is 870 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α ˜ = 1 ω max ω min ω min ω max α ( ω ) .
f = ω min ω max α ( ω ) 3 .

Metrics